Skip to main content
Log in

Extracellular Synthesis of Silver Nanoparticles Using a Novel Bacterial Strain Kocuria rhizophila BR-1: Process Optimization and Evaluation of Antibacterial Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This article discusses the extracellular synthesis of silver nanoparticles (AgNPs) employing a bacterial strain of Kocuria sp. isolated from beverage industry wastewater. The isolated bacterial strain was discovered as Gram positive with a coccus shape and identified as Kocuria rhizophila BR-1 by standard molecular technique (16S rRNA) and biochemical tests. The occurrence of a dark brown colour in the solution and a surface plasmon resonance (SPR) peak at 405 nm indicates the existence of AgNPs. The nanoparticles are spherical in form, with a size distribution of 10–200 nm and mean particle size of 46.73 nm, according to transmission electron microscopy (TEM) and particle size distribution (PSD) analysis. The crystalline phase of the synthesised AgNPs was shown by X-ray diffraction (XRD) investigation. Maximum AgNPs production (1.281 absorbance units) was achieved at 9.89 pH, 54.07 °C temperature, 1.17 mM salt concentration, and 13.24 h incubation time. The antibacterial activity of the produced AgNPs against Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli was found to be good. In this study, the Kocuria rhizophila BR-1 bacterial strain was used for the first time to synthesise AgNPs. Henceforth, the bacterial strain used in this study can be utilized for the efficient synthesis of silver nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alyahya, S. A., Alomary, M. N., Aldossary, A. M., AlFahad, A. J., & ALmughem FA, Tawfik EA, Alsharari SS, Ameen F,. (2021). Prokaryotic and Microbial Eukaryotic System for the NP Synthesis. Microbial Nanotechnology: Green Synthesis and Applications (pp. 19–39). Springer.

    Chapter  Google Scholar 

  2. Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.

    Article  Google Scholar 

  3. Haider, A., & Kang, I. K. (2015). Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Advances in Materials Science and Engineering, 2015, 165257.

    Article  Google Scholar 

  4. Ramkumar, V. S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G. D., Dung, T. N. B., & Kannapiran, E. (2017). Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports, 14, 1–7.

    Article  Google Scholar 

  5. Li, D., Jiang, D., & Xie, J. (2015). Controllable synthesis of fluorapatite microcrystals decorated with silver nanoparticles and their optical properties. RSC Advances, 5, 12392–12396.

    Article  Google Scholar 

  6. Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience, 10(5), 1369–1378.

    Article  Google Scholar 

  7. Arif, R., & Uddin, R. (2021). A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Medical Devices and Sensors, 4(1), 10158.

    Article  Google Scholar 

  8. Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23.

    Article  Google Scholar 

  9. Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174.

    Article  Google Scholar 

  10. Hamedi, S., Shojaosadati, S. A., Shokrollahzadeh, S., & Hashemi-Najafabadi, S. (2014). Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: Controlled synthesis and antibacterial activity. World Journal of Microbiology and Biotechnology, 30, 693–704.

    Article  Google Scholar 

  11. Ameen, F., Abdullah, M. M., Al-Homaidan, A. A., Al-Lohedan, H. A., Al-Ghanayem, A. A., & Almansob, A. (2020). Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. Journal of Molecular Structure, 1217, 128392.

    Article  Google Scholar 

  12. Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P., & Pugazhendhi, A. (2018). Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial Pathogenesis, 116, 221–226.

    Article  Google Scholar 

  13. Abdelghany, T. M., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M. M., Magdah, A. G., Helmy, E. A., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. BioNanoScience, 8, 5–16.

    Article  Google Scholar 

  14. Hernandez-Daaz, J. A., Garza-García, J. J., Zamudio-Ojeda, A., Leon-Morales, J. M., López-Velázquez, J. C., & García-Morales, S. (2021). Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phyto-pathogens. Journal of the Science of Food and Agriculture, 101, 1270–1287.

    Article  Google Scholar 

  15. Anandaradje A, Meyappan V, Kumar I, Sakthivel N (2020) Microbial Synthesis of Silver Nanoparticles and Their Biological Potential. In: Shukla, A. (eds) Nanoparticles in Medicine. Springer, Singapore pp 99-133.

  16. Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2, 32.

    Article  Google Scholar 

  17. Shivaji, S., Madhu, S., & Singh, S. (2011). Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry, 46, 1800–1807.

    Article  Google Scholar 

  18. Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences., 96, 13611–13614.

    Article  Google Scholar 

  19. Marooufpour N, Alizadeh M, Hatami M, Asgari Lajayer B (2019) Biological synthesis of nanoparticles by different groups of bacteria. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. pp 63–85.

  20. Javaid, A., Oloketuyi, S. F., Khan, M. M., & Khan, F. (2018). Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience, 8, 43–59.

    Article  Google Scholar 

  21. Schluter, M., Hentzel, T., Suarez, C., Koch, M., Lorenz, W. G., Bohm, L., During, R. A., Koinig, K. A., & Bunge, M. (2014). Synthesis of novel palladium (0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere, 117, 462–470.

    Article  Google Scholar 

  22. Sundararaju, S., Arumugam, M., & Bhuyar, P. (2020). Microbacterium sp. MRS-1, a potential bacterium for cobalt reduction and synthesis of less/non-toxic cobalt oxide nanoparticles (Co3O4). Beni-Suef University Journal of basic and applied Sciences, 9, 1–9.

    Article  Google Scholar 

  23. Babu, M. G., & Gunasekaran, P. (2009). Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids and Surfaces B, 74, 191–195.

    Article  Google Scholar 

  24. Velmurugan, P., Iydroose, M., Mohideen, M. H., Mohan, T. S., Cho, M., & Oh, B. T. (2014). Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Bioprocess and Biosystems Engineering, 37, 1527–1534.

    Article  Google Scholar 

  25. Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., & Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol, 44, 1127–1132.

    Google Scholar 

  26. Ameen, F., AlYahya, S., Govarthanan, M., ALjahdali, N., Al-Enazi, N., Alsamhary, K., Alshehri, W. A., Alwakeel, S. S., & Alharbi, S. A. (2020). Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. Journal of Molecular Structure, 1202, 127233.

    Article  Google Scholar 

  27. Saratale, R. G., Karuppusamy, I., Saratale, G. D., Pugazhendhi, A., Kumar, G., Park, Y., Ghodake, G. S., Bharagava, R. N., Banu, J. R., & Shin, H. S. (2018). A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids and Surfaces B: Biointerfaces, 170, 20–35.

    Article  Google Scholar 

  28. Jayakumar, S., Bhuyar, P., Pugazhendhi, A., Rahim, M. H. A., Maniam, G. P., & Govindan, N. (2021). Effects of light intensity and nutrients on the lipid content of marine microalga (diatom) Amphiprora sp. for promising biodiesel production. Science of the Total Environment, 768, 145471.

    Article  Google Scholar 

  29. Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology, 3, 208.

    Article  Google Scholar 

  30. Nasution, F., Theanhom, A. A., Bhuyar, P., & Chumpookam, J. (2021). Genetic diversity evaluation in wild Muntingia calabura L. based on Random Amplified Polymorphic DNA (RAPD) markers. Gene Reports, 25, 101335.

    Article  Google Scholar 

  31. Abiola, C., & Oyetayo, V. O. (2016). Research Article Isolation and Biochemical Characterization of Microorganisms Associated with the Fermentation of Kersting’s Groundnut (Macrotyloma geocarpum). Journal of Microbiology, 11, 47–55.

    Google Scholar 

  32. Bhuyar, P., Rahim, M. H. A., Sundararaju, S., Ramaraj, R., Maniam, G. P., & Govindan, N. (2020). Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Seuf University Journal of basic and Applied Sciences, 9, 1–15.

    Google Scholar 

  33. Vaidyanathan, R., Gopalram, S., Kalishwaralal, K., Deepak, V., Pandian, S. R. K., & Gurunathan, S. (2010). Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids and Surfaces B: Biointerfaces, 75, 335–341.

    Article  Google Scholar 

  34. Ramli, A. N. M., Sukri, N. A. M., Azelee, N. I. W., & Bhuyar, P. (2021). Exploration of antibacterial and antioxidative activity of seed/peel extracts of Southeast Asian fruit Durian (Durio zibethinus) for effective shelf-life enhancement of preserved meat. Journal of Food Processing and Preservation, 45, 15662.

    Google Scholar 

  35. Ugwoke, E., Aisida, S. O., Mirbahar, A. A., Arshad, M., Ahmad, I., Zhao, T. K., & Ezema, F. I. (2020). Concentration induced properties of silver nanoparticles and their antibacterial study. Surfaces and Interfaces, 18, 100419.

    Article  Google Scholar 

  36. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., & Sreedhar, B. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36–43.

    Article  Google Scholar 

  37. Kaur, A., Preet, S., Kumar, V., Kumar, R., & Kumar, R. (2019). Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids and Surfaces B: Biointerfaces, 176, 62–69.

    Article  Google Scholar 

  38. Bhuyar, P., Rahim, M. H. A., Maniam, G. P., Ramaraj, R., & Govindan, N. (2020). Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN Applied Sciences, 2, 1–10.

    Article  Google Scholar 

  39. Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. J. C. S. B. B. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76, 50–56.

    Article  Google Scholar 

  40. Sukweenadhi, J., Setiawan, K. I., Avanti, C., Kartini, K., Rupa, E. J., & Yang, D. C. (2021). Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. South African Journal of Chemical Engineering, 1, 1–8.

    Article  Google Scholar 

  41. Syrvatka, V., Karachkovska, A., Gromyko, O., Kulyk, N., & Fedorenko, V. (2021). Synthesis and properties of silver nanoparticles-antibiotic conjugates for study of antibiotic-resistance mechanisms. Optical Engineering, 60, 037101.

    Article  Google Scholar 

  42. Tindall, B. J., Rossello-Mora, R., Busse, H. J., Ludwig, W., & Kampfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60, 249–266.

    Article  Google Scholar 

  43. Stackebrandt, E., Koch, C., Gvozdiak, O., & Schumann, P. (1995). Taxonomic Dissection of the Genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic and Evolutionary Microbiology, 45, 682–692.

    Google Scholar 

  44. Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering C, 58, 44–52.

    Article  Google Scholar 

  45. Shafaghat, A. (2015). Synthesis and characterization of silver nanoparticles by photosynthesis method and their biological activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45, 381–387.

    Article  Google Scholar 

  46. Bhuyar, P., Tamizi, N. A. B. M., Rahim, M. H. A., Maniam, G. P., & Govindan, N. (2019). Effect of ultraviolet light on the degradation of low-density and high-density polyethylene characterized by the weight loss and FTIR. Maejo International Journal of Energy and Environmental Communication, 1, 26–31.

    Article  Google Scholar 

  47. Sharma, P., Pant, S., Dave, V., Tak, K., Sadhu, V., & Reddy, K. R. (2019). Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. Journal of Microbiological Methods, 160, 107–116.

    Article  Google Scholar 

  48. Priyadarshini, S., Gopinath, V., Priyadharsshini, N. M., MubarakAli, D., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids and Surfaces B: Biointerfaces, 102, 232–237.

    Article  Google Scholar 

  49. Sanghi, R., & Verma, P. (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology, 100, 501–504.

    Article  Google Scholar 

  50. Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC (2015) Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. Journal of Nanomaterials 2015.

  51. Wang, C., Singh, P., Kim, Y. J., Mathiyalagan, R., Myagmarjav, D., Wang, D., Jin, C. G., & Yang, D. C. (2016). Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens. Artificial Cells, Nanomedicine, and Biotechnology, 44, 1714–1721.

    Article  Google Scholar 

  52. Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M. D., & Kalaichelvan, P. T. (2014). Acalyphaindica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnology Reports, 4, 42–49.

    Article  Google Scholar 

  53. Cumberland, S. A., & Lead, J. R. (2009). Particle size distributions of silver nanoparticles at environmentally relevant conditions. Journal of Chromatography A, 1216, 9099–9105.

    Article  Google Scholar 

  54. Viorica, R. P., Pawel, P., Kinga, M., Michal, Z., Katarzyna, R., & Boguslaw, B. (2017). Lactococcus lactis as a safe and inexpensive source of bioactive silver composites. Applied Microbiology and Biotechnology, 101, 7141–7153.

    Article  Google Scholar 

  55. Mohanta, Y. K., & Behera, S. K. (2014). Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by Streptomyces sp. SS2. Bioprocess and Biosystems Engineering, 37, 2263–2269.

    Article  Google Scholar 

  56. Abd-Elnaby, H. M., Abo-Elala, G. M., Abdel-Raouf, U. M., & Hamed, M. M. (2016). Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egyptian Journal of Aquatic Research, 42, 301–312.

    Article  Google Scholar 

  57. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., Hariharan, N., & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74, 328–335.

    Article  Google Scholar 

  58. Singh, P., Singh, H., Kim, Y. J., Mathiyalagan, R., Wang, C., & Yang, D. C. (2016). Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enyzme and Microbial Technology, 86, 75–83.

    Article  Google Scholar 

  59. Maharani, V., Sundaramanickam, A., & Balasubramanian, T. (2016). In vitro anticancer activity of silver nanoparticle synthesized by Escherichia coli VM1 isolated from marine sediments of Ennore southeast coast of India. Enyzme and Microbial Technology, 95, 146–154.

    Article  Google Scholar 

  60. Mujaddidi, N., Nisa, S., Al Ayoubi, S., Bibi, Y., Khan, S., Sabir, M., Zia, M., Ahmad, S., & Qayyum, A. (2021). Pharmacological properties of biogenically synthesized silver nanoparticles using endophyte Bacillus cereus extract of Berberis lyceum against oxidative stress and pathogenic multidrug-resistant bacteria. Saudi Journal of Biological Sciences, 1, 6432–6440.

    Article  Google Scholar 

  61. Ajaz, S., Ahmed, T., Shahid, M., Noman, M., Shah, A. A., Mehmood, M. A., Abbas, A., Cheema, A. I., Iqbal, M. Z., & Li, B. (2021). Bioinspired green synthesis of silver nanoparticles by using a native Bacillus sp. strain AW1–2: Characterization and antifungal activity against Colletotrichum falcatum Went. Enzyme and Microbial Technology, 1, 109745.

    Article  Google Scholar 

  62. John, S., & Campbell, W. H. (1983). Heavy metal inactivation and chelator stimulation of higher plant nitrate reductase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 742, 435–445.

    Article  Google Scholar 

  63. Ovais, M., Khalil, A. T., Ayaz, M., Ahmad, I., Nethi, S. K., & Mukherjee, S. (2018). Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach. International Journal of Molecular Sciences, 19, 4100.

    Article  Google Scholar 

  64. Singh, R., Shedbalkar, U. U., Wadhwani, S. A., & Chopade, B. A. (2015). Bacteriagenic silver nanoparticles: Synthesis, mechanism, and applications. Applied Microbiology and Biotechnology, 99, 4579–4593.

    Article  Google Scholar 

  65. Barabadi, H., Honary, S., Ebrahimi, P., Alizadeh, A., Naghibi, F., & Saravanan, M. (2019). Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorganic and Nano-Metal Chemistry, 49, 33–43.

    Article  Google Scholar 

  66. Balakumaran, M. D., Ramachandran, R., Balashanmugam, P., & MukeshkumarKalaichelvan, D. J. P. T. (2016). Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens. Microbiological Research, 182, 8–20.

    Article  Google Scholar 

  67. Duran, N., Marcato, P. D., Duran, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology, 90, 1609–1624.

    Article  Google Scholar 

  68. Jiang, H., Manolache, S., Wong, A. C. L., & Denes, F. S. (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93, 1411–1422.

    Article  Google Scholar 

  69. Rose, G. K., Soni, R., Rishi, P., & Soni, S. K. (2019). Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Processing and Synthesis, 8, 144–156.

    Article  Google Scholar 

  70. Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32, 79.

    Article  Google Scholar 

  71. Pourali, P., Baserisalehi, M., Afsharnezhad, S., Behravan, J., Ganjali, R., Bahador, N., & Arabzadeh, S. (2013). The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. BioMetals, 26, 189–196.

    Article  Google Scholar 

  72. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18, 225103.

    Article  Google Scholar 

  73. Lin, J., Huang, Z., Wu, H., Zhou, W., Jin, P., Wei, P., Zhang, Y., Zheng, F., Zhang, J., Xu, J., & Hu, Y. (2014). Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy, 10, 2006–2020.

    Article  Google Scholar 

  74. Yu-sen, E. L., Vidic, R. D., Stout, J. E., McCartney, C. A., & Victor, L. Y. (1998). Inactivation of Mycobacterium avium by copper and silver ions. Water Research, 32, 1997–2000.

    Article  Google Scholar 

  75. Begum, I., Ameen, F., Soomro, Z., Shamim, S., AlNadhari, S., Almansob, A., Al-Sabri, A., & Arif, A. (2021). Facile fabrication of malonic acid capped silver nanoparticles and their antibacterial activity. Journal of King Saud University Science, 33, 101231.

    Article  Google Scholar 

  76. Sarkar, S., Jana, A. D., Samanta, S. K., & Mostafa, G. (2007). Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron, 26, 4419–4426.

    Article  Google Scholar 

Download references

Funding

The part of this work is funded by Department of Science and Technology (DST-SERB), Ministry of Science and Technology, Government of India (EEQ/2016/000675). Mr. Mohit Kumar thanks the National Institute of Technology (NIT) Raipur for providing him with a scholarship during his Ph.D. research. Also, thanks are due to the Metallurgical and Materials Engineering Department, National Institute of Technology Raipur, for providing SEM, EDX, and XRD instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vasanth.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Upadhyay, L.S.B., Kerketta, A. et al. Extracellular Synthesis of Silver Nanoparticles Using a Novel Bacterial Strain Kocuria rhizophila BR-1: Process Optimization and Evaluation of Antibacterial Activity. BioNanoSci. 12, 423–438 (2022). https://doi.org/10.1007/s12668-022-00968-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00968-0

Keywords

Navigation