Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review

  • Published:
BioNanoScience Aims and scope Submit manuscript

This article was retracted on 06 April 2024

This article has been updated

Abstract

The graphene-based materials are promising for applications in supercapacitors and other energy storage devices due to the intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. This review summarizes recent development on graphene-based materials for supercapacitor electrodes, based on their macrostructural complexity, i.e., zero-dimensional (0D) (e.g., free-standing graphene dots and particles), one-dimensional (1D) (e.g., fiber-type and yarn-type structures), two-dimensional (2D) (e.g., graphenes and graphene-based nanocomposite films), and three-dimensional (3D) (e.g., graphene foam and hydrogel-based nanocomposites). There are extensive and on-going researches on the rationalization of their structures at varying scales and dimensions, development of effective and low-cost synthesis techniques, design and architecturing of graphene-based materials, as well as clarification of their electrochemical performance. There are several methods for producing graphene, each with its own advantages and disadvantages. Graphene-based materials have great potential to be employed in supercapacitors due to their unique two-dimensional structure and inherent physical properties like excellent electrical conductivity and large area. This text summarizes recent developments within the sector of supercapacitors, including double-layer capacitors and quasi-capacitors. The pros and cons of using them in supercapacitors are discussed. Compared to traditional electrodes, graphene-based materials show some new properties and mechanisms within the method of energy storage and release. During this paper, we briefly describe carbon structures, particularly graphene, and also the history of graphene discovery, and briefly describe the synthesis methods, properties, characterization methods, and applications of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Not applicable

Change history

Abbreviations

0D:

zero-dimensional

1D:

one-dimensional

2D:

two-dimensional

3D:

three-dimensional

EDLCs:

electric double-layer capacitors

CVD:

chemical vapor deposition

AFM:

atomic force microscopy

PMMA:

polymethyl methacrylate

References

  1. Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872–876.

    Article  Google Scholar 

  2. Geim, A. K. (2009). Graphene: Status prospects. Science, 324, 1530–1534.

    Article  Google Scholar 

  3. Katsnelson, M. (2007). Graphene: Carbon in two dimensions. Materialstoday, 10, 20–27.

    Google Scholar 

  4. Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene, the new nanocarbon. Journal of Materials Chemistry, 19, 2457–2469.

    Article  Google Scholar 

  5. Geim, A. K., & Novoselov, K. S. (2007). The Rise of graphene. Nature Materials, 6, 183–191.

    Article  Google Scholar 

  6. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., & Poh, H. L. (2010). Graphene for electrochemical sensing biosensing. TrAC, Trends in Analytical Chemistry, 29, 954–965.

    Article  Google Scholar 

  7. Wikipedia®, Graphene http://en.wikipedia.org/wiki/Graphene

  8. Heyrovska, R., “Atomic structures of graphene, benzenemethane with bond lengths as sums of the single, double resonance bond radii of carbon”, (2008).

    Google Scholar 

  9. Geim, A. K., & Kim, P. (2008). Carbon wonderland. Scientific American, 90–97.

  10. Choi, W., Lahiri, I., Seelaboyina, R., & Kang, Y. S. (2010). Synthesis of graphene its applications: A review. Critical Reviews in Solid State and Materials Sciences, 35, 52–71.

    Article  Google Scholar 

  11. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.

    Article  Google Scholar 

  12. Boehm, H. P., Setton, R., & Stumpp, E. (1986). Nomenclature terminology of graphite intercalation compounds II. Carbon, 24, 241–245.

    Article  Google Scholar 

  13. Mouras, S., Hamwi, A., Djurado, D., & Cousseins, J. C. (1987). Synthesis of first stage graphite intercalation compounds with fluorides. Revue de Chimie Minerale, 24, 572–582.

    Google Scholar 

  14. Chandler, D. (2009). A new approach to water desalination. MIT Tech Talk, 53, 1–4.

    Google Scholar 

  15. Wikipedia®,GraphiteIntercalationCompoundhttp://en.wikipedia.org/wiki/Graphite_intercalation_compound .

  16. Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society A, 149, 249–259.

    Google Scholar 

  17. Boehm, H. P., Clauss, A., Fischer, G. O., & Hofmann, U. (1962). Das Adsorptionsverhalten Sehr Dunner Kohlenstoff-Folien. Zeitschrift fuer Anorganische und Allgemeine Chemie, 316, 119–127.

    Article  Google Scholar 

  18. Geim, A. K. (2012). Graphene prehistory. Physica A, T, 146, 014003–014004.

    Google Scholar 

  19. Oshima, C., & Nagashima, A. (1997). Ultra-thin epitaxial films of graphite hexagonal boron nitride on solid surfaces. Journal of Physics: Condensed Matter, 9, 1–20.

    Google Scholar 

  20. Seibert, K., Cho, G. C., Kütt, W., Kurz, H., Reitze, D. H., Dadap, J. I., Ahn, H., Downer, M. C., & Malvezzi, A. M. (1990). Femtosecond carrier dynamics in graphite. Physical Review B, 42, 2842–2851.

    Article  Google Scholar 

  21. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.

    Article  Google Scholar 

  22. Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39, 3157–3180.

    Article  Google Scholar 

  23. Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene: The new two-dimensional nanomaterial. Angewandte Chemie, International Edition, 48, 7752–7777.

    Article  Google Scholar 

  24. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Graphene based electrochemical sensors biosensors: A review. Electroanalysis, 22, 1027–1036.

    Article  Google Scholar 

  25. Sutter, P. W., Flege, J. I., & Sutter, E. A. (2008). Epitaxial graphene on ruthenium. Nature Materials, 7, 406–411.

    Article  Google Scholar 

  26. Dedkov, Y. S., Fonin, M., Rüdiger, U., & Laubschat, C. (2008). Rashba effect in the graphene/Ni(111) system. Physical Review Letters, 100, 107602–107605.

    Article  Google Scholar 

  27. Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009). Large-area synthesis of high-quality uniform graphene films on copper foils. Science, 324, 1312–1314.

    Article  Google Scholar 

  28. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.

    Article  Google Scholar 

  29. Dato, A., Radmilovic, V., Lee, Z. H., Phillips, J., & Frenklach, M. (2008). Substrate-free gas-phase synthesis of graphene sheets. Nano Letters, 8, 2012–2016.

    Article  Google Scholar 

  30. Ohta, T., Bostwick, A., Seyller, T., Horn, K., & Rotenberg, E. (2006). Controlling the electronic structure of bilayer graphene. Science, 313, 951–954.

    Article  Google Scholar 

  31. Heera, W. A. d., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene. Solid State Communications, 143, 92–100.

    Article  Google Scholar 

  32. Wang, X., Zhi, L. J., Tsao, N., Tomovic, Z., Li, J., & Müllen, K. (2008). Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie, International Edition, 47, 2990–2992.

    Article  Google Scholar 

  33. Choucair, M., Thordarson, P., & Stride, J. A. (2009). Gram-scale production of graphene based on solvothermal. Nature Nanotechnology, 4, 30–33.

    Article  Google Scholar 

  34. Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4, 217–224.

    Article  Google Scholar 

  35. Boukhvalov, D. W., & Katsnelson, M. I. (2008). Modeling of graphite oxide. Journal of the American Chemical Society, 130, 10697–10701.

    Article  Google Scholar 

  36. Su, C. Y., Lu, A. Y., Xu, Y., Chen, F. R., Khlobystov, A. N., & Li, L. J. (2011). High-quality thin graphene films fast electrochemical exfoliation. ACS Nano, 5, 2332–2339.

    Article  Google Scholar 

  37. Wang, J., Manga, K. K., Bao, Q., & Loh, K. P. (2011). High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. Journal of the American Chemical Society, 133, 8888–8891.

    Article  Google Scholar 

  38. Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G., & Dai, H. J. (2009). Narrow graphene nanoribbons carbon nanotubes. Nature, 458, 877–880.

    Article  Google Scholar 

  39. Subrahmanyam, K. S., Vivekchand, S. R. C., Govindaraj, A., & Rao, C. N. R. (2008). A study of graphenes prepared by different methods: Characterization, properties solubilization. Journal of Materials Chemistry, 18, 1517–1523.

    Article  Google Scholar 

  40. Safavi, A., Tohidi, M., Aghakhani Mahyari, F., & Shahbaazi, H. (2012). One-pot synthesis of large scale graphene nanosheets graphite–liquid crystal composite via thermal treatment. Journal of Materials Chemistry, 22, 3825–3831.

    Article  Google Scholar 

  41. ۲۵ - Chen, J. H, Jang, C., Xiao, S., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic extrinsic performances of graphene devices on SiO2. Nature Nanotechnology, 3, 206–209.

    Article  Google Scholar 

  42. Kuzmenko, A., Heumen, E. V., Carbone, F., & Marel, D. V. (2008). Universal optical conductance of graphite. Physiycal Review Letter, 100, 117401–117404.

    Article  Google Scholar 

  43. Peres, N. M. R. (2009). The electronic properties of graphene its bilayer. Vacuum, 83, 1248–1252.

    Article  Google Scholar 

  44. Morozov, S. V., Novoselov, K. S., Schedin, F., Jiang, D., Firsov, A. A., & Geim, A. K. (2005). Two-dimensional electron hole gases at the surface of graphite. Physical Review B, 72, 201401–201404.

    Article  Google Scholar 

  45. Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A., & Haddon, R. C. (2006). Solution properties of graphite graphene. Journal of the American Chemical Society, 128, 7720–7721.

    Article  Google Scholar 

  46. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z. Y., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563–568.

    Article  Google Scholar 

  47. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.

    Article  Google Scholar 

  48. Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene. Chemical Reviews, 110, 132–145.

    Article  Google Scholar 

  49. Zhang, J., Yang, H., Shen, G., Cheng, P., Zhang, J., & Gu, S. (2010). Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 46, 1112–1114.

    Article  Google Scholar 

  50. Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., & Chen, J. (2008). One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid- functionalized graphene sheets. Advanced Functional Materials, 18, 1518–1525.

    Article  Google Scholar 

  51. Wang, S., Zhang, Y., Abidi, N., & Cabrales, L. (2009). Wettability surface free energy of graphene films. Langmuir, 25, 11078–11081.

    Article  Google Scholar 

  52. Castro Neto, A. H., & Novoselov, K. (2011). Two-dimensional crystals: beyond graphene. Materials Express, 1, 10–17.

    Article  Google Scholar 

  53. Karuppasamy L., Gurusamy L., Lee GJ., Wu J.J. (2019) Synthesis of metal/metal oxide supported reduced graphene oxide (RGO) for the applications of electrocatalysis and supercapacitors. In: Khan A., Jawaid M., Neppolian B., Asiri A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, . https://doi.org/10.1007/978-981-32-9057-0_1.

  54. Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 4(1), 25–29.

    Article  Google Scholar 

  55. Liu, C., Yu, Z., Neff, D., Zhamu, A., & Jang, B. Z. (2010). Nano Letters, 10.

  56. Pumera M (2009). The chemical record, Vol. 9.

  57. Pan, H. (2010). Nanoscale Research Letters, 5.

  58. Zhai, Y., Dou, Y., Zhao, D., Fulvio, P. F., Mayes, R. T., & Dai, S. (2011). Advanced Materials, 23.

  59. Zhang, Y., Feng, H., Wu, X. B., Wang, L. Z., Zhang, A. Q., Xia, T. C., Dong, H. C., Li, X. F., & Zhang, L. S. (2009). International Journal of Hydrogen Energy, 34.

  60. Stoller, M. D., Park, S., Yanwu, Z., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502.

    Article  Google Scholar 

  61. Jeong, Y. C., Kim, J. H., Kwon, S. H., Oh, J. Y., Park, J., Jung, Y., et al. (2017). Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. Journal of Materials Chemistry A, 5, 23909–23918. https://doi.org/10.1039/c7ta08153g

    Article  Google Scholar 

  62. Luo, Q., Ma, H., Hao, F., Hou, Q., Ren, J., Wu, L., et al. (2017). Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Advanced Functional Materials, 27, 1–8. https://doi.org/10.1002/adfm.201703068

    Article  Google Scholar 

  63. Shrestha, A., Batmunkh, M., Shearer, C. J., Yin, Y., Andersson, G. G., Shapter, J. G., et al. (2017). Nitrogen-doped CNx/CNTs heteroelectrocatalysts for highly efficient dye-sensitized solar cells. Advanced Energy Materials, 7. https://doi.org/10.1002/aenm.201602276

  64. Gong, J., Zhou, Z., Sumathy, K., Yang, H., & Qiao, Q. (2016). Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells. Journal of Applied Physics, 119. https://doi.org/10.1063/1.4945375

  65. Abderrahmane, A., Mourad, A., Mohammed, S., Smaisim, G. F., Toghraie, D., Koulali, A., et al. (2023). Second law analysis of a 3D magnetic buoyancy-driven flow of hybrid nanofluid inside a wavy cubical cavity partially filled with porous layer and non-Newtonian layer. Annals of Nuclear Energy, 181, 109511.

    Article  Google Scholar 

  66. Wang, Y., Zheng, J., Smaisim, G. F., & Toghraie, D. (2022). Molecular dynamics simulation of phase transition procedure of water-based nanofluid flow containing CuO nanoparticles. Alexandria Engineering Journal, 61(12), 12453–12461.

    Article  Google Scholar 

  67. Xiao, M., & Smaisim, G. F. (2022). Joint chance-constrained multi-objective optimal function of multi-energy microgrid containing energy storages and carbon recycling system. Journal of Energy Storage, 55, 105842.

    Article  Google Scholar 

  68. Mourad, A., Aissa, A., Abed, A. M., Smaisim, G. F., Toghraie, D., Fazilati, M. A., & Alizadeh, A. A. (2022). The numerical analysis of the melting process in a modified shell-and-tube phase change material heat storage system. Journal of Energy Storage, 55, 105827.

    Article  Google Scholar 

  69. Li, F., Abed, A. M., Naghdi, O., Nasajpour-Esfahani, N., Hamedi, S., Al Mashhadani, Z. I., & Toghraie, D. (2022). The numerical investigation of the finned double-pipe phase change material heat storage system equipped with internal vortex generator. Journal of Energy Storage, 55, 105413.

    Article  Google Scholar 

  70. Cai, W., Sabetvand, R., Abed, A. M., Toghraie, D., Hekmatifar, M., Rahbari, A., & Smaisim, G. F. (2022). Thermal analysis of hydration process in the vicinity of the Copper matrix using molecular dynamics simulation for application in thermal engineering. Energy Reports, 8, 7468–7475.

    Article  Google Scholar 

  71. Abed, A. M., Majdi, H. S., Sopian, K., Ali, F. H., Al-Bahrani, M., Al-Amir, Q. R., & Yakoob, A. K. (2022). Techno-economic analysis of dual ejectors solar assisted combined absorption cooling cycle. Case Studies in Thermal Engineering, 39, 102423.

    Article  Google Scholar 

  72. Abed, A. M., Ameer, S. A. A., Abdtawfeeq, T. H., Ibrahim, A. K., Ruhaima, A. A. K., Yada, A., & Shariari, R. (2022). Effect of polarity on prediction of second order derivative thermodynamic properties of refrigerants. Fluid Phase Equilibria, 113652.

  73. Liu, B., Khalid, I., Patra, I., Kuzichkin, O. R., Sivaraman, R., Jalil, A. T., & Hekmatifar, M. (2022). The effect of hydrophilic and hydrophobic surfaces on the thermal and atomic behavior of ammonia/copper nanofluid using molecular dynamics simulation. Journal of Molecular Liquids, 364, 119925.

    Article  Google Scholar 

  74. Hai, T., Abidi, A., Wang, L., Abed, A. M., Mahmoud, M. Z., El Din, E. M. T., & Smaisim, G. F. (2022). Simulation of solar thermal panel systems with nanofluid flow and PCM for energy consumption management of buildings. Journal of Building Engineering, 58, 104981.

    Article  Google Scholar 

  75. Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society, 132, 7472–7477.

    Article  Google Scholar 

  76. Li, M., Tang, Z., Leng, M., & Xue, J. (2014). Flexible solid-state supercapacitor based on graphene-based hybrid films. Advanced Functional Materials, 24, 7495–7502.

    Article  Google Scholar 

  77. Choi, B. G., Yang, M., Hong, W. H., Choi, J. W., & Huh, Y. S. (2012). 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano, 6, 4020–4028.

    Article  Google Scholar 

  78. Yang, M., Lee, K. G., Lee, S. J., Lee, S. B., Han, Y.-K., & Choi, B. G. (2015). Three-dimensional expanded graphene–metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors. ACS Applied Materials & Interfaces, 7, 22364–22371.

    Article  Google Scholar 

  79. Chen, C. M., Zhang, Q., Huang, C. H., Zhao, X. C., Zhang, B. S., Kong, Q. Q., et al. (2012). Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitors. Chemical Communications, 48, 7149–7151.

    Article  Google Scholar 

  80. Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., & ChenY Chen, M. (2009). Journal of Physical Chemistry C, 113.

  81. Wang, Y., Shi, Z. Q., Huang, Y., Ma, Y. F., Wang, C. Y., Chen, M. M., & Chen, Y. S. (2009). The Journal of Physical Chemistry C, 113.

  82. Lv, W., Tang, D. M., He, Y. B., You, C. H., Shi, Z. Q., Chen, X. C., Chen, C. M., Hou, P. X., Liu, C., & Yang, Q. H. (2009). ACS Nano, 3.

  83. Zhu, Y. W., Murali, S., Stoller, M. D., Velamakanni, A., Piner, R. D., & Ruoff, R. S. (2010). Carbon, 48.

  84. Zhu, Y. W., Stoller, M. D., Cai, W. W., Velamakanni, A., Piner, R. D., Chen, D., & Ruoff, R. S. (2010). ACS Nano, 4.

  85. Wang, H. L., Casalongue, H. S., Liang, Y., et al. (2010). Journal of the American Chemical Society, 132.

  86. Wang, D. W., Li, F., Wu, Z. S., Ren, W., & Cheng, H. M. (2009). Electro-chemistry Communications, 11.

  87. SiE, Y., & Samulski, T. (2008). Chemistry of Materials, 20.

  88. Wu, Z. S., Zhou, G., Yina, L. C., Ren, W., Li, F., & Cheng, H. M. (2012). Nano Energy, 1.

  89. Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). ACS Nano, 4.

  90. Lu, T., Zhang, Y., Li, H., Pan, L., & LiZ Sun, Y. (2010). Electrochimica Acta, 55.

  91. Jeong, H. K., Jin, M., Ra, E. J., Sheem, K. Y., Han, G. H., & ArepalliY, S. (2010). H Lee. ACS Nano, 4.

  92. Yu, D., & Dai, L. (2010). Journal of Physical Chemistry Letters, 1, 2.

    Article  Google Scholar 

  93. Wu, Q., Xu, Y., Yao, Z., & Liu, A. (2010). G Shi. ACS Nano, 4(4).

  94. Hu, J. X., Gou, J., Yang, M., Omar, G. J., Tan, J. Y., Zeng, S. W., Liu, Y. P., Han, K., Lim, Z. S., Huang, Z., Wee, A. T. S., & Ariando, A. (2020). Room-temperature colossal magneto resistance in terraced single-layer graphene. Advanced Materials, 32, 2002201. https://doi.org/10.1002/adma.202002201

    Article  Google Scholar 

  95. Viti, L., Cadore, A. R., Yang, X., Vorobiev, A., Muench, J. E., Watanabe, K., Taniguchi, T., Stake, J., Ferrari, A. C., & Vitiello, M. S. (2021). Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics, 10(1), 89–98. https://doi.org/10.1515/nanoph-2020-0255

    Article  Google Scholar 

  96. Azak, H. (2020). Electrochemical hydrogen peroxide nanosensor using a reduced graphene oxide-poly(6-(4H-dithieno[3,2-b:2′,3′-d]pyrrol-4-yl)hexan-1-amine) hybrid-modified electrode. Journal of Applied Polymer Science, 137, 48538. https://doi.org/10.1002/app.48538

    Article  Google Scholar 

  97. Han, G., Chen, Z., Cai, L., Zhang, Y., Tian, J., Ma, H., & Fang, S. (2020). Poly(vinyl alcohol)/carboxyl graphene membranes for ethanol dehydration by pervaporation. Chemical Engineering and Technology, 43, 574–581. https://doi.org/10.1002/ceat.201900149

    Article  Google Scholar 

  98. Dehghan, M., Tahmasebipour, M., & Ebrahimi, S. (2022). Design, fabrication, and characterization of an SLA 3D printed nanocomposite electromagnetic microactuator. Microelectronic Engineering, 254, 111695.

    Article  Google Scholar 

  99. Abadi, A. A., Mohammad, Masrournia, M., & Abedi, M. R. (2021). Simultaneous extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using magnetite–graphene oxide composites. Chemical Methodologies, 5(1), 11–20. https://doi.org/10.22034/chemm.2021.118260

    Article  Google Scholar 

  100. Motahharinia, M., Zamani, H. A., & Karimi-Maleh, H. (2021). Electrochemical determination of doxorubicin in injection samples using paste electrode amplified with reduced graphene oxide/Fe3O4 nanocomposite and 1-Hexyl-3-methylimidazolium hexafluorophosphate. Chemical Methodologies, 5(2), 107-113. 10.22034/chemm.2021.119678

  101. Moghaddam, A., Zamani, H. A., & Karimi-Maleh, H. (2021). A new sensing strategy for determination of tamoxifen using Fe3O4/graphene-ionic liquid nanocomposite amplified paste electrode. Chemical Methodologies, 5(5), 373–380. https://doi.org/10.22034/chemm.2021.135727

    Article  Google Scholar 

  102. Bakhtadze, V., Mosidze, V., Machaladze, T., Kharabadze, N., Lochoshvili, D., Pajishvili, M., ... & Mdivani, N. (2020). Activity of Pd-MnOx/Cordierite (Mg, Fe) 2Al4Si5O18) Catalyst for carbon monoxide oxidation. European Chemical Bulletin, 9(2), 75-77

  103. Rajeshkumar, S., Subramanian, A. K., & Prabhakar, R. (2021). In vitro anti-inflammatory activity of silymarin/hydroxyapatite/chitosan nanocomposites and its cytotoxic effect using brine shrimp lethality assay: Nanocomposite for biomedical applications. Journal of Population Therapeutics and Clinical Pharmacology, 28(2). https://doi.org/10.47750/jptcp.2022.874

  104. Netam, A. K., Bhargava, V. P., Singh, R., & Sharma, P. (2021). Physico-chemical characterization of ayurvedic swarna bhasma by using SEM, EDAX, XRD and PSA. Journal of Complementary Medicine Research, 12(2), 204–209. https://doi.org/10.5455/jcmr.2021.12.02.23

    Article  Google Scholar 

  105. Wani, S. D., & Mundada, A. (2021). A review: Emerging trends in bio nanocomposites. International Journal of Pharmacy Research & Technology, 11(1), 1–8. https://doi.org/10.31838/ijprt/11.01.01

    Article  Google Scholar 

  106. Jahanbin, B., Davoodnia, A., Behmadi, H., & Tavakoli-Hoseini, N. (2012). Polymer support immobilized acidic ionic liquid: Preparation and its application as catalyst in the synthesis of Hantzsch 1, 4-dihydropyridines. Bulletin of the Korean Chemical Society, 33(7), 2140–2144.

    Article  Google Scholar 

  107. Baniasadi, M., Maaref, H., Dorzadeh, A., & Mohammad Alizadeh, P. (2020). A sensitive SiO2@Fe3O4/GO nanocomposite modified ionic liquid carbon paste electrode for the determination of cabergoline. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(4), 11–22. https://doi.org/10.30492/ijcce.2020.105268.3508

    Article  Google Scholar 

  108. Garayemi, S., & Raeisi, F. (2020). Graphene oxide as a docking station for modern drug delivery system. by Ulva lactuca species study its antimicrobial, anti-fungal and anti-blood cancer activity. Advances in Applied NanoBio-Technologies, 1(2), 53–62.

    Google Scholar 

  109. A. A, M. ., F.B, S. ., G.P, S. ., M, M. ., B, N. ., M.M, S. ., A.Y, S. ., S. D, H. ., R, G. ., & A.M, G. (2021). Influence of reaction temperature on bioethanol production by saccharomyces cerevisiae using cassava as substrate. International Journal of Sustainable Energy and Environmental Research, 10(1), 9–16. https://doi.org/10.18488/journal.13.2021.101.9.16

  110. Zhao, T.-H., Castillo, O., Jahanshahi, H., Yusuf, A., Alassafi, M. O., Alsaadi, F. E., & Chu, Y.-M. (2021). A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Applied and Computational Mathematics, 20(1), 160–176.

    MathSciNet  Google Scholar 

  111. Zhao, T.-H., Wang, M.-K., & Chu, Y.-M. (2022). On the bounds of the perimeter of an ellipse. Acta Mathematica Scientia, 42B(2), 491–501. https://doi.org/10.1007/s10473-022-0204-y

    Article  MathSciNet  Google Scholar 

  112. T.-H. Zhao, M.-K. Wang, G.-J. Hai, Y.-M. Chu, Landen inequalities for Gaussian hypergeometric function, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas RACSAM, 2022, 116(1), Paper No. 53, 23 pages. https://doi.org/10.1007/s13398-021-01197-y.

  113. Nazeer, M., Hussain, F., Ijaz Khan, M., Asad-ur-Rehman, E. R., El-Zahar, Y.-M., & Chu, M. Y. M. (2022). Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Applied Mathematics and Computation, 420, Paper No. 126868, 15. https://doi.org/10.1016/j.amc.2021.126868

    Article  MathSciNet  Google Scholar 

  114. Chu, Y.-M., Shankaralingappa, B. M., Gireesha, B. J., Alzahrani, F., Ijaz Khan, M., & Khan, S. U. (2022). Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Applied Mathematics and Computation, 419, Paper No. 126883, 14. https://doi.org/10.1016/j.amc.2021.126883

    Article  MathSciNet  Google Scholar 

  115. Zhao, T.-H., Ijaz Khan, M., & Chu, Y.-M. (2021). Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Mathematicsl Methods in the Applied Sciences. https://doi.org/10.1002/mma.7310

  116. T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted H\"{o}lder mean of the zero-balanced generalized complete elliptic integrals, Computational Methods and Function Theory, 2021, 21(3), 413--426. https://doi.org/10.1007/s40315-020-00352-7

  117. Zhao, T.-H., Wang, M.-K., & Chu, Y.-M. (2021). Concavity and bounds involving generalized elliptic integral of the first kind. Journal of Mathematical Inequalities, 15(2), 701–724. https://doi.org/10.7153/jmi-2021-15-50

    Article  MathSciNet  Google Scholar 

  118. T.-H. Zhao, M.-K. Wang, Y.-M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas RACSAM, 2021, 115(2), Paper No. 46, 13 pages. https://doi.org/10.1007/s13398-020-00992-3

  119. Chu, H.-H., Zhao, T.-H., & Chu, Y.-M. (2020). Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Mathematica Slovaca, 70(5), 1097–1112. https://doi.org/10.1515/ms-2017-0417

    Article  MathSciNet  Google Scholar 

  120. Zhao, T.-H., He, Z.-Y., & Chu, Y.-M. (2020). On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math., 5(6), 6479–6495. https://doi.org/10.3934/math.2020418

    Article  MathSciNet  Google Scholar 

  121. Zhao, T.-H., Wang, M.-K., & Chu, Y.-M. (2020). A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math., 5(5), 4512–4528. https://doi.org/10.3934/math.2020290

    Article  MathSciNet  Google Scholar 

  122. Zhao, T.-H., Shi, L., & Chu, Y.-M. (2020). Convexity and concavity of the modified Bessel functions of the first kind with respect to Holder means. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas RACSAM, 114(2) Paper No. 96, 14. https://doi.org/10.1007/s13398-020-00825-3

    Article  Google Scholar 

  123. T.-H. Zhao, B.-C. Zhou, M.-K. Wang, Y.-M. Chu, On approximating the quasi-arithmetic mean, Journal of Inequalities and Applications, 2019, 2019, Paper No. 42, 12 pages. https://doi.org/10.1186/s13660-019-1991-0.

  124. Zhao, T.-H., Wang, M.-K., Zhang, W., & Chu, Y.-M. (2018). Quadratic transformation inequalities for Gaussian hypergeometric function. Journal of Inequalities and Applications, 2018, Paper No. 251, 15. https://doi.org/10.1186/s13660-018-1848-y

    Article  MathSciNet  Google Scholar 

  125. Chu, Y.-M., & Zhao, T.-H. (2016). Concavity of the error function with respect to Holder means. Mathematical Inequalities & Applications, 19(2), 589–595. https://doi.org/10.7153/mia-19-43

    Article  MathSciNet  Google Scholar 

  126. Zhao, T.-H., Shen, Z.-H., & Chu, Y.-M. (2021). Sharp power mean bounds for the lemniscate type means. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas RACSAM, 115(4) Paper No. 175, 16. https://doi.org/10.1007/s13398-021-01117-0

    Article  MathSciNet  Google Scholar 

  127. Wang, M.-K., Hong, M.-Y., Xu, Y.-F., Shen, Z.-H., & Chu, Y.-M. (2020). Inequalities for generalized trigonometric and hyperbolic functions with one parameter. Journal of Mathematical Inequalities, 14(1), 1–21. https://doi.org/10.7153/jmi-2020-14-01

    Article  MathSciNet  Google Scholar 

  128. Xu, H.-Z., Qian, W.-M., & Chu, Y.-M. (2022). Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas RACSAM, 116(1) Paper No. 21, 15. https://doi.org/10.1007/s13398-021-01162-9

    Article  MathSciNet  Google Scholar 

  129. Karthikeyan, K., Karthikeyan, P., Baskonus, H. M., Venkatachalam, K., & Chu, Y.-M. (2021). Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations. Mathematicsl Methods in the Applied Sciences. https://doi.org/10.1002/mma.7954

  130. Y.-M. Chu, U. Nazir, M. Sohail, M. M. Selim, J-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 2021, 5(3), Article 119, 17. https://doi.org/10.3390/fractalfract5030119.

  131. Rashid, S., Sultana, S., Karaca, Y., Khalid, A., & Chu, Y.-M. (2022). Some further extensions considering discrete proportional fractional operators. Fractals, 30(1) Article ID 2240026, 12. https://doi.org/10.1142/S0218348X22400266

    Article  Google Scholar 

  132. Zhao, T.-H., Qian, W.-M., & Chu, Y.-M. (2021). Sharp power mean bounds for the tangent and hyperbolic sine means. Journal of Mathematical Inequalities, 15(4), 1459–1472. https://doi.org/10.7153/jmi-2021-15-100

    Article  MathSciNet  Google Scholar 

  133. Zhao, T.-H., Qian, W.-M., & Chu, Y.-M. (2021). On approximating the arc lemniscate functions. Indian Journal of Pure and Applied Mathematics. https://doi.org/10.1007/s13226-021-00016-9

  134. Narges Hajiseyedazizi, S., Samei, M. E., Alzabut, J., & Chu, Y.-M. (2021). On multi-step methods for singular fractional $q$-integro-differential equations. Open Math., 19(1), 1378–1405. https://doi.org/10.1515/math-2021-0093

    Article  MathSciNet  Google Scholar 

  135. Jin, F., Qian, Z.-S., Chu, Y.-M., & ur Rahman, M. (2022). On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. Journal of Applied Analysis and Computation, 12(2), 790–806. https://doi.org/10.11948/20210357

    Article  MathSciNet  Google Scholar 

  136. Rashid, S., Abouelmagd, E. I., Khalid, A., Farooq, F. B., & Chu, Y.-M. (2022). Some recent developments on dynamical $\hbar$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. Fractals, 30(2) Article ID 2240110, 15. https://doi.org/10.1142/S0218348X22401107

    Article  Google Scholar 

  137. Wang, F.-Z., Khan, M. N., Ahmad, I., Ahmad, H., Abu-Zinadah, H., & Chu, Y.-M. (2022). Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations. Fractals, 30(2) Article ID 2240051, 11. https://doi.org/10.1142/S0218348X22400515

    Article  Google Scholar 

  138. Zhao, T.-H., Bhayo, B. A., & Chu, Y.-M. (2021). Inequalities for generalized Grotzsch ring function. Computational Methods and Function Theory. https://doi.org/10.1007/s40315-021-00415-3

  139. Rashid, S., Abouelmagd, E. I., Sultana, S., & Chu, Y.-M. (2022). New developments in weighted n-fold type inequalities via discrete generalized h-proportional fractional operators. Fractals, 30(2) Article ID 2240056, 15. https://doi.org/10.1142/S0218348X22400564

    Article  Google Scholar 

  140. Chu, Y.-M., Bashir, S., Ramzan, M., & Malik, M. Y. (2022). Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Mathematicsl Methods in the Applied Sciences. https://doi.org/10.1002/mma.8234

  141. Qian, W.-M., Chu, H.-H., Wang, M.-K., & Chu, Y.-M. (2022). Sharp inequalities for the Toader mean of order -1 in terms of other bivariate means. Journal of Mathematical Inequalities, 16(1), 127–141. https://doi.org/10.7153/jmi-2022-16-10

    Article  MathSciNet  Google Scholar 

  142. Zhao, T.-H., Chu, H.-H., & Chu, Y.-M. (2022). Optimal Lehmer mean bounds for the $n$th power-type Toader mean of n=-1, 1, 3. Journal of Mathematical Inequalities, 16(1), 157–168. https://doi.org/10.7153/jmi-2022-16-12

    Article  MathSciNet  Google Scholar 

  143. Zhao, T.-H., Wang, M.-K., Dai, Y.-Q., & Chu, Y.-M. (2022). On the generalized power-type Toader mean. Journal of Mathematical Inequalities, 16(1), 247–264. https://doi.org/10.7153/jmi-2022-16-18

    Article  MathSciNet  Google Scholar 

  144. Iqbal, S. A., Hafez, M. G., Chu, Y.-M., & Park, C. (2022). Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. Journal of Applied Analysis and Computation, 12(2), 770–789. https://doi.org/10.11948/20210324

    Article  Google Scholar 

  145. E. Ashpazzadeh, Y.-M. Chu, M. S. Hashemi, M. Moharrami, M. Inc, Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation, Applied Mathematics and Computation, 2022, 427, Paper No. 127171, 16 pages. https://doi.org/10.1016/j.amc.2022.127171.

  146. Gao, T., Li, C., Zhang, Y., Yang, M., Jia, D., Jin, T., Hou, Y., & Li, R. (2019). Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 131, 51–63.

    Article  Google Scholar 

  147. Zhang, Y., Li, C., Jia, D., Li, B., Wang, Y., Yang, M., Hou, Y., & Zhang, X. (2016). Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 232, 100–115.

    Article  Google Scholar 

  148. Guo, S., Li, C., Zhang, Y., Wang, Y., Li, B., Yang, M., Zhang, X., & Liu, G. (2017). Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy. Journal of Cleaner Production, 140, 1060–1076.

    Article  Google Scholar 

  149. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H., & Wang, J. (2019). Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 45(12), 14908–14920.

    Article  Google Scholar 

  150. Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q., & Cao, H. (2018). Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. Journal of Cleaner Production, 193, 236–248.

    Article  Google Scholar 

  151. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., & Yang, M. (2016). Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chinese Journal of Aeronautics, 29(4), 1084–1095.

    Article  Google Scholar 

  152. Jia, D., Li, C., Zhang, D., Zhang, Y., & Zhang, X. (2014). Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. Journal of Nanoparticle Research, 16(12), 1–15.

    Article  Google Scholar 

  153. Yanbin, Z. H. A. N. G., Hao Nan, L. I., Changhe, L. I., Chuanzhen, H. U. A. N. G., Hafiz Muhammad, A. L. I., Xuefeng, X. U., Cong, M. A. O., Wenfeng, D. I. N. G., Xin, C. U. I., Min, Y. A. N. G., Tianbiao, Y. U., Muhammad, J. A. M. I. L., Munish Kumar, G. U. P. T. A., Dongzhou, J. I. A., & Zafar, S. A. I. D. (2021). Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. https://doi.org/10.1007/s40544-021-0536-y

  154. Cui, X., Li, C. H., Ding, W. F., Chen, Y., Mao, C., Xu, X. F., Liu, B., Wang, D. Z., Li, H. N., Zhang, Y. B., Said, Z., Debnath, S., Jamil, M., Muhammad Ali, H., & Sharma, S. (2021). Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: From mechanisms to application. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2021.08.011

  155. Liu, M., Li, C., Zhang, Y., An, Q., Yang, M., Gao, T., Mao, C., Liu, B., Cao, H., Xuefeng, X., Said, Z., Debnath, S., Jamil, M., Ali, H. M., & Sharma, S. (2021). Cryogenic minimum quantity lubrication machining: From mechanism to application. Frontiers of. Mechanical Engineering, 16(4), 649–697. https://doi.org/10.1007/s11465-021-0654-2

    Article  Google Scholar 

  156. Gao, T., Zhang, Y., Li, C., Wang, Y., An, Q., Liu, B., Said, Z., & Sharma, S. (2021). Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Scientific Reports, 11, 22535.

    Article  Google Scholar 

  157. Gao, T., Li, C., Wang, Y., Liu, X., An, Q., Li, H. N., Zhang, Y., Cao, H., Liu, B., Wang, D., Said, Z., Debnath, S., Jamil, M., Ali, H. M., & Sharma, S. (2022). Carbon fiber reinforced polymer in drilling: From damage mechanisms to suppression. Composite Structures, 286, 115232.

    Article  Google Scholar 

  158. Yang, Y. Y., Gong, Y. D., Li, C. H., Wen, X. L., & Sun, J. Y. (2021). Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. Journal of Materials Processing Technology, 291, 117023. https://doi.org/10.1016/j.jmatprotec.2020.117023

    Article  Google Scholar 

  159. Said, Z., Arora, S., Farooq, S., Sundar, L. S., Li, C., & Allouhi, A. (2022). Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: Academic insights and perspectives. Solar Energy Materials and Solar Cells, 236, 111504.

    Article  Google Scholar 

  160. Ejaz, A., Babar, H., Ali, H. M., Jamil, F., Janjua, M. M., Fattah, I. R., Said, Z., & Li, C. (2021). Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustainable Energy Technologies and Assessments, 46, 101199.

    Article  Google Scholar 

  161. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., & Cao, H. (2019). Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. The International Journal of Advanced Manufacturing Technology, 102(5), 2617–2632.

    Article  Google Scholar 

  162. Salimi, M., Pirouzfar, V., & Kianfar, E. (2017). Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid & Polymer Science, 295, 215–226. https://doi.org/10.1007/s00396-016-3998-0

    Article  Google Scholar 

  163. Kianfar, E. (2018). Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russian Journal of Applied Chemistry, 91, 1711–1720. https://doi.org/10.1134/S1070427218100208

    Article  Google Scholar 

  164. Kianfar, E. (2019). Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russian Journal of Applied Chemistry, 92, 1094–1101. https://doi.org/10.1134/S1070427219080068

    Article  Google Scholar 

  165. Kianfar, E., Salimi, M., Kianfar, F., Kianfar, M., & Razavikia, S. A. H. (2019). CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromolecular Research, 27, 83–89. https://doi.org/10.1007/s13233-019-7009-4

    Article  Google Scholar 

  166. Kianfar, E. (2019). Ethylene to propylene over zeolite ZSM-5: Improved catalyst performance by treatment with CuO. Russian Journal of Applied Chemistry, 92, 933–939. https://doi.org/10.1134/S1070427219070085

    Article  Google Scholar 

  167. Kianfar, E., Shirshahi, M., Kianfar, F., & Kianfar, F. (2018). Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. Silicon, 10, 2617–2625. https://doi.org/10.1007/s12633-018-9798-z

    Article  Google Scholar 

  168. Salimi, M., Pirouzfar, V., & Kianfar, E. (2017). Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polymer Science, Series A, 59, 566–574. https://doi.org/10.1134/S0965545X17040071

    Article  Google Scholar 

  169. Kianfar, F., & Kianfar, E. (2019). Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. Journal of Inorganic and Organometallic Polymers, 29, 2176–2185. https://doi.org/10.1007/s10904-019-01177-1

    Article  Google Scholar 

  170. Kianfar, E., Azimikia, R., & Faghih, S. M. (2020). Simple and strong dative attachment of α-Diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catalysis Letters, 150, 2322–2330. https://doi.org/10.1007/s10562-020-03116-z

    Article  Google Scholar 

  171. Kianfar, E. (2019). Nanozeolites: Synthesized, properties, applications. Journal of Sol-Gel Science and Technology, 91, 415–429. https://doi.org/10.1007/s10971-019-05012-4

    Article  Google Scholar 

  172. Liu, H., & Kianfar, E. (2021). Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catalysis Letters, 151, 787–802. https://doi.org/10.1007/s10562-020-03333-6

    Article  Google Scholar 

  173. Kianfar E, Salimi M, Hajimirzaee S, Koohestani B (2018). Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. International Journal of Chemical Reactor Engineering; 17.

  174. Ehsan kianfar. (2019). Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: A review. Reviews in Inorganic Chemistry, 39, 157–177.

    Article  Google Scholar 

  175. Ehsan Kianfar and Mahmoud Salimi, A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: Advances in chemistry research, Volume 59: Edition: James C. Taylor Chapter: 1: : Nova Science Publishers, Inc., NY, USA.2020.

  176. Ehsan Kianfar and Ali Razavi, Zeolite catalyst based selective for the process MTG: A review: In book: Zeolites: Advances in research and applications, Edition: Annett Mahler Chapter: 8: Publisher: Nova Science Publishers, Inc., NY, USA.2020.

  177. Ehsan Kianfar, Zeolites: Properties, applications, modification and selectivity: In book: Zeolites: Advances in research and applications, Edition: Annett Mahler Chapter: 1: : Nova Science Publishers, Inc., NY, USA.2020.

  178. Kianfar, E., Hajimirzaee, S., Musavian, S. S., & Mehr, A. S. (2020). Zeolite-based catalysts for methanol to gasoline process: A review. Microchemical Journal, 104822.

  179. Kianfar, E., Baghernejad, M., & Rahimdashti, Y. (2015). Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biological Forum., 7, 1671–1685.

    Google Scholar 

  180. Ehsan kianfar. Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Publisher: Lambert Academic Publishing. 1-80(2020). ISBN: 978-613-9-81541-8.

  181. Kianfar, E., Pirouzfar, V., & Sakhaeinia, H. (2017). An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. Journal of the Taiwan Institute of Chemical Engineers, 80, 954–962.

    Article  Google Scholar 

  182. Kianfar, E., & Viet, C. (2021). Polymeric membranes on base of polymethyl methacrylate for air separation: A review. Journal of Materials Research and Technology, 10, 1437–1461.

    Article  Google Scholar 

  183. S.s.nmousavian, Faravar, P., Zarei, Z., Zimikia, R., Monjezi, M. G., & Kianfar, E. (2020). Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. Journal of Environmental Chemical Engineering, 8(4), 103946.

    Article  Google Scholar 

  184. Yang, Z., Zhang, L., Zhou, Y., Wang, H., Wen, L., & Kianfar, E. (2020). Investigation of effective parameters on SAPO-34 Nano catalyst the methanol-to-olefin conversion process: A review. Reviews in Inorganic Chemistry, 40(3), 91–105. https://doi.org/10.1515/revic-2020-0003

    Article  Google Scholar 

  185. Gao, C., Liao, J., Jingqiong, L., Ma, J., & Kianfar, E. (2020). The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: A review. Reviews in Inorganic Chemistry. https://doi.org/10.1515/revic-2020-0007

  186. Ehsan Kianfar, Mahmoud Salimi, Behnam Koohestani Zeolite catalyst: A review on the production of light olefins. Publisher: Lambert Academic Publishing. 1-116(2020).ISBN:978-620-3-04259-7.

  187. Ehsan Kianfar,. Investigation on catalysts of “Methanol to light Olefins”. Publisher: Lambert Academic Publishing. 1-168(2020).ISBN: 978-620-3-19402-9.

  188. Kianfar E. (2020). Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology, MedDocs Publishers.Vol. 5, Chapter 3, pp. 16-21.

  189. Kianfar E. (2020). Catalytic properties of nanomaterials and factors affecting it importance & applications of nanotechnology, MedDocs Publishers.Vol. 5, Chapter 4, pp. 22-25.

  190. Kianfar E. (2020). Introducing the application of nanotechnology in lithium-ion battery Importance & Applications of Nanotechnology, MedDocs Publishers. Vol. 4, Chapter 4, pp. 1-7.

  191. Kianfar, E., & Mazaheri, H. (2020). Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine. Chemical Engineer, 1, 83–91.

    Google Scholar 

  192. Kianfar, E. (2020). Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chemical Engineering., 1, 69–74.

    Article  Google Scholar 

  193. Kianfar, E., Salimi, M., & Koohestani, B. (2020). Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chemical Engineering., 1, 75–82.

    Article  Google Scholar 

  194. Kianfar, E. (2020). An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chemical Engineering., 1, 92–103.

    Article  Google Scholar 

  195. Kianfar, E., & Mafi, S. (2020). Ionic liquids: properties, application, and synthesis. Fine Chemical Engineering., 2, 22–31.

    Article  Google Scholar 

  196. Faghih, S. M., & Kianfar, E. (2018). Modeling of fluid bed reactor of ethylene dichloride production in Abadan petrochemical based on three-phase hydrodynamic model. International Journal of Chemical Reactor Engineering, 16, 1–14.

    Article  Google Scholar 

  197. Ehsan Kianfar; H. Mazaheri. Methanol to gasoline: A sustainable transport fuel, In book: Advances in chemistry research. Volume 66, Edition: james C.taylorChapter: 4Publisher: Nova Science Publishers, Inc., NY, USA.2020.

  198. Kianfar. (2020). A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: A review. In Advances in Chemistry Research (Vol. 63, Chapter 2). Nova Science Publishers, Inc.).

    Google Scholar 

  199. Kianfar, E., Hajimirzaee, S., Faghih, S. M., et al. (2020). Polyvinyl chloride + nanoparticles titanium oxide membrane for separation of O2/N2. Advances in Nanotechnology. Nova Science Publishers, Inc..

    Google Scholar 

  200. Kianfar, E. (2020). Synthesis of characterization nanoparticles isophthalic acid/aluminum nitrate (CAU-10-H) using method hydrothermal. In Advances in Chemistry Research. Nova Science Publishers, Inc..

    Google Scholar 

  201. Ehsan Kianfar. CO2 capture with ionic liquids: A review. Advances in Chemistry Research. Volume 67Publisher: Nova Science Publishers, Inc., NY, USA.2020.

  202. Ehsan Kianfar. Enhanced light olefins production via methanol dehydration over promoted SAPO-34. Advances in Chemistry Research. Volume 63, Chapter: 4, Nova Science Publishers, Inc., NY, USA.2020.

  203. Ehsan Kianfar. Gas hydrate: Applications, structure, formation, separation processes, thermodynamics. Advances in Chemistry Research. Volume 62, Edition: James C. Taylor. Chapter: 8. Publisher: Nova Science Publishers, Inc., NY, USA.2020.

  204. Kianfar, M., Kianfar, F., & Kianfar, E. (2016). The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. American Journal of Oil and Chemical Technologies, 4(1), 29–44.

    Google Scholar 

  205. Kianfar, E. (2016). The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 Blends. American Journal of Oil and Chemical Technologies, 4(1), 27–42.

    Google Scholar 

  206. Kianfar, F., Moghadam, S. R. M., & Kianfar, E. (2015). Energy optimization of Ilam gas refinery unit 100 by using HYSYS refinery software. Indian Journal of Science and Technology, 8(S9), 431–436.

    Article  Google Scholar 

  207. Kianfar, E. (2015). Production and identification of vanadium oxide nanotubes. Indian Journal of Science and Technology, 8(S9), 455–464.

    Article  Google Scholar 

  208. Kianfar, F., Moghadam, S. R. M., & Kianfar, E. (2015). Synthesis of Spiro Pyran by using silica-bonded N-Propyldiethylenetriamine as recyclable basic catalyst. Indian Journal of Science and Technology, 8(11), 68669.

    Article  Google Scholar 

  209. Saeed Hajimirzaee, Amin Soleimani Mehr & Ehsan Kianfar (2020). Modified ZSM-5 zeolite for conversion of LPG to aromatics, polycyclic aromatic compounds. https://doi.org/10.1080/10406638.2020.1833048.

  210. Kianfar, E. (2021). Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Petroleum Chemistry, 61, 527–537. https://doi.org/10.1134/S0965544121050030

    Article  Google Scholar 

  211. Huang, X., Zhu, Y., & Kianfar, E. (2021). Nano biosensors: properties, applications and electrochemical techniques. Journal of Materials Research and Technology, 12, 1649–1672. https://doi.org/10.1016/j.jmrt.2021.03.048

    Article  Google Scholar 

  212. Kianfar, E. (2021). Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. Journal of Nanbiotechnology, 19, 159. https://doi.org/10.1186/s12951-021-00896-3

    Article  Google Scholar 

  213. Kianfar, E. (2020). Magnetic nanoparticles in targeted drug delivery: A review. Journal of Superconductivity and Novel Magnetism. https://doi.org/10.1007/s10948-021-05932-9

  214. Syah, R., Zahar, M., & Kianfar, E. (2021). Nanoreactors: properties, applications and characterization. International Journal of Chemical Reactor Engineering, 19(10), 000010151520210069. https://doi.org/10.1515/ijcre-2021-0069

    Article  Google Scholar 

  215. Majdi, H. S., Latipov, Z. A., Borisov, V., et al. (2021). Nano and battery anode: A review. Nanoscale Research Letters, 16, 177. https://doi.org/10.1186/s11671-021-03631-x

    Article  Google Scholar 

  216. Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021, Article ID 5102014). Nanomaterial by sol-gel method: Synthesis and application. Advances in Materials Science and Engineering, 21, 2021. https://doi.org/10.1155/2021/5102014

    Article  Google Scholar 

  217. Ansari, M. J., Kadhim, M. M., Hussein, B. A., et al. (2022). Synthesis and stability of magnetic nanoparticles. BioNanoSci. https://doi.org/10.1007/s12668-022-00947-5

  218. Chupradit, S., Kavitha, M., Suksatan, W., Ansari, M. J., Al Mashhadani, Z. I., Kadhim, M. M., Mustafa, Y. F., Shafik, S. S., & Kianfar, E. (2022). Morphological control: Properties and applications of metal nanostructures. Advances in Materials Science and Engineering, 2022(1971891), 15. https://doi.org/10.1155/2022/1971891

    Article  Google Scholar 

  219. Aldeen, O. D. A. S., Mahmoud, M. Z., Majdi, H. S., Mutlak, D. A., Uktamov, K. F., & Kianfar, E. (2022). Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from Naphtha. Advances in Materials Science and Engineering, 2022(6165180), 22. https://doi.org/10.1155/2022/6165180

    Article  Google Scholar 

  220. Suryatna, A., Raya, I., Thangavelu, L., Alhachami, F. R., Kadhim, M. M., Altimari, U. S., Mahmoud, Z. H., Mustafa, Y. F., & Kianfar, E. (2022). A review of high-energy density lithium-air battery technology: Investigating the effect of oxides and nanocatalysts. Journal of Chemistry, 2022(2762647, 32). https://doi.org/10.1155/2022/2762647

  221. Abdelbasset, W. K., Jasim, S. A., Bokov, D. O., et al. (2022). Comparison and evaluation of the performance of graphene-based biosensors. Carbon Letters. https://doi.org/10.1007/s42823-022-00338-6

  222. Jasim, S. A., Kadhim, M. M., KN, V., et al. (2022). Molecular junctions: Introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Brazilian Journal of Physics, 52, 31. https://doi.org/10.1007/s13538-021-01033-z

    Article  Google Scholar 

  223. Trung, N. D., Huy, D. T. N., Opulencia, J. C., M., et al. (2022). Conductive gels: Properties and applications of nanoelectronics. Nanoscale Research Letters, 17, 50. https://doi.org/10.1186/s11671-022-03687-3

    Article  Google Scholar 

  224. Kianfar, E., Salimi, M., Pirouzfar, V., & Koohestani, B. (2018). Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. International Journal of Applied Ceramic Technology, 15, 734–741. https://doi.org/10.1111/ijac.12830

    Article  Google Scholar 

  225. Kianfar, Ehsan, Salimi, Mahmoud, Pirouzfar, Vahid and Koohestani, Behnam (2018). “Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion” International Journal of Chemical Reactor Engineering, vol. 16, no. 7, pp. 20170229. https://doi.org/10.1515/ijcre-2017-0229

  226. He, J., Liu, X., Zhao, Y., Du, H., & Zhang, T.,... Shi, J. (2022). Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification. ACS Applied Electronic Materials. https://doi.org/10.1021/acsaelm.1c01129

  227. Zhang, X., Tang, Y., Zhang, F., & Lee, C. (2016). A novel aluminum-graphite dual-ion battery. Advanced Energy Materials, 6(11), 1502588. https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  228. Tong, X., Zhang, F., Ji, B., Sheng, M., & Tang, Y. (2016). Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Advanced Materials (Weinheim), 28(45), 9979–9985. https://doi.org/10.1002/adma.201603735

    Article  Google Scholar 

  229. Ji, B., Zhang, F., Song, X., & Tang, Y. (2017). A novel potassium-ion-based dual-ion battery. Advanced materials (Weinheim), 29(19), 1700519. https://doi.org/10.1002/adma.201700519

    Article  Google Scholar 

  230. Wang, M., Jiang, C., Zhang, S., Song, X., & Tang, Y.,... Cheng, H. (2018). Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry, 10(6), 667–672. https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  231. Ma, Z., Zhang, L., Ma, X., & Shi, F. (2022). A dual strategy for synthesizing crystal plane/defect co-modified BiOCl microsphere and photodegradation mechanism insights. Journal of Colloid and Interface Science, 617, 73–83. https://doi.org/10.1016/j.jcis.2022.02.082

    Article  Google Scholar 

  232. Wang, G., Liu, D., Fan, S., Li, Z., & Su, J. (2021). High-k erbium oxide film prepared by sol-gel method for low-voltage thin-film transistor. Nanotechnology, 32(21), 215202. https://doi.org/10.1088/1361-6528/abe439

    Article  Google Scholar 

  233. Yan, H., Zhao, M., Feng, X., Zhao, S., Zhou, X., & Li, S.,... Yang, C. (2022). PO43- coordinated robust single-atom platinum catalyst for selective polyol oxidation. Angewandte Chemie, International Edition. https://doi.org/10.1002/ange.202116059

  234. Lai, W., & Wong, W. (2021). Use of graphene-based materials as carriers of bioactive agents. Asian Journal of Pharmaceutical Sciences, 16(5), 577–588. https://doi.org/10.1016/j.ajps.2020.11.004

    Article  Google Scholar 

  235. Obireddy, S. R., & Lai, W. (2021). Multi-component hydrogel beads incorporated with reduced graphene oxide for ph-responsive and controlled co-delivery of multiple agents. Pharmaceutics, 13(3), 313. https://doi.org/10.3390/pharmaceutics13030313

    Article  Google Scholar 

  236. Lang, X., Wang, T., Wang, Z., Li, L., & Yao, C.,... Cai, K. (2022). Reasonable design of a V2O5-x/TiO2 active interface structure with high polysulfide adsorption energy for advanced lithium-sulfur batteries. Electrochimica Acta, 403, 139723. https://doi.org/10.1016/j.electacta.2021.139723

    Article  Google Scholar 

  237. Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531.

    Article  Google Scholar 

  238. El-Kady, M. F., Strong, V., Dubin, S., & Kaner, R. B. (2012). Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 335(6074), 1326–1330.

    Article  Google Scholar 

  239. He, Y., Huang, L., Cai, J. S., Zheng, X. M., & Sun, S. G. (2010). Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochimica Acta, 55, 1140–1144. https://doi.org/10.1016/j.electacta.2009.10.014

    Article  Google Scholar 

  240. Wei, W., Wang, J., Zhou, L., Yang, J., Schumann, B., & Nuli, Y. (2011). CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochemistry Communications, 13, 399–402. https://doi.org/10.1016/j.elecom.2011.02.001

    Article  Google Scholar 

  241. Kim, S. W., Ryu, J., Park, C. B., & Kang, K. (2010). Carbon nanotube-amorphous FePO4core-shell nanowires as cathode material for Li ion batteries. Chemical Communications, 46, 7409–7411. https://doi.org/10.1039/c0cc02524k

    Article  Google Scholar 

  242. Chen, Y., Du, L., Yang, P., Sun, P., Yu, X., & Mai, W. (2015). Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources, 287, 68–74. https://doi.org/10.1016/J.JPOWSOUR.2015.04.026

    Article  Google Scholar 

  243. Sun, J., Huang, Y., Fu, C., Wang, Z., Huang, Y., Zhu, M., et al. (2016). High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy, 27, 230–237. https://doi.org/10.1016/J.NANOEN.2016.07.008

    Article  Google Scholar 

  244. Choi, H., Kim, H., Hwang, S., Choi, W., & Jeon, M. (2011). Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode Sol. Energy Materials and Solar Cells, 95, 323–325. https://doi.org/10.1016/J.SOLMAT.2010.04.044

    Article  Google Scholar 

  245. Hsieh, C.-T., Yang, B.-H., & Lin, J.-Y. (2011). One- and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells Carbon N. Y., 49, 3092–3097. https://doi.org/10.1016/J.CARBON.2011.03.031

    Article  Google Scholar 

  246. Wu, Z. S., Ren, W., Xu, L., Li, F., & Cheng, H. M. (2011). Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 5463–5471. https://doi.org/10.1021/nn2006249

  247. Wang, H., Cui, L.-F., & Yang, Y. (2010). Hernan Sanchez Casalongue, Joshua Tucker Robinson, Yongye Liang, Yi Cui, Dai Hailiang, Mn3O4-Graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society, 132, 13978–13980. https://doi.org/10.1002/celc.201700093

    Article  Google Scholar 

  248. Le, Z., Liu, F., Nie, P., Li, X., Liu, X., Bian, Z., et al. (2017). Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano, 11, 2952–2960. https://doi.org/10.1021/acsnano.6b08332

    Article  Google Scholar 

  249. Casaluci, S., Gemmi, M., Pellegrini, V., Di Carlo, A., & Bonaccorso, F. (2016). Graphene-based large area dye-sensitized solar cell modules. Nanoscale, 8, 5368–5378. https://doi.org/10.1039/c5nr07971c

    Article  Google Scholar 

  250. Wang, H. Y., & Hui, H. (2012). Graphene as a counter electrode material for dye-sensitized solar cells. Energy & Environmental Science, 5, 8182–8188. https://doi.org/10.1016/j.matlet.2012.07.006

    Article  Google Scholar 

  251. Han, G. S., Song, Y. H., Jin, Y. U., Lee, J. W., Park, N. G., Kang, B. K., et al. (2015). Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Applied Materials & Interfaces, 7, 23521–23526. https://doi.org/10.1021/acsami.5b06171

    Article  Google Scholar 

  252. Wang, G., Wang, H., Lu, X., Ling, Y., Yu, M., Zhai, T., et al. (2014). Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Advanced Materials, 26, 2676–2682. https://doi.org/10.1002/adma.201304756

    Article  Google Scholar 

  253. Yu, L., Hu, L., Anasori, B., Liu, Y., Zhu, Q., Zhang, P., et al. (2018). MXene-bonded activated carbon as a flexible. ACS Energy Letters, 3, 1597–1603. https://doi.org/10.1021/acsenergylett.8b00718

    Article  Google Scholar 

  254. Wang, Z., Han, J. J., Zhang, N., et al. (2019). Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. Journal of Solid State Electrochemistry, 23, 3373–3382. https://doi.org/10.1007/s10008-019-04435-x

    Article  Google Scholar 

  255. Feng, L., Zhang, S., & Liu, Z. (2011). Graphene based gene transfection. Nanoscale, 3, 1252–1257.

    Article  Google Scholar 

  256. Chen, C., Perdomo, P. J., Fernandez, M., Barbeito, A., & Wang, C. (2016). Porous NiO/graphene composite thin films as high performance anodes for lithium-ion batteries. Journal of Energy Storage, 8, 198–204. https://doi.org/10.1016/J.EST.2016.08.008

    Article  Google Scholar 

  257. Ambade, R. B., Ambade, S. B., Shrestha, N. K., Nah, Y. C., Han, S. H., Lee, W., et al. (2013). Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chemical Communications, 49, 2308–2310. https://doi.org/10.1039/c3cc00065f

    Article  Google Scholar 

  258. Zhang, J., Yang, X., He, Y., Bai, Y., Kang, L., Xu, H., et al. (2016). δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. Journal of Materials Chemistry A, 4, 9088–9096. https://doi.org/10.1039/c6ta02989b

    Article  Google Scholar 

  259. Maza, W. A., Haring, A. J., Ahrenholtz, S. R., Epley, C. C., Lin, S. Y., & Morris, A. J. (2015). Ruthenium(II)-polypyridyl zirconium(IV) metal-organic frameworks as a new class of sensitized solar cells. Chemical Science, 7, 719–727. https://doi.org/10.1039/c5sc01565k

    Article  Google Scholar 

  260. He, Y., Huang, L., Cai, J. S., Zheng, X. M., & Sun, S. G. (2010). Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium batteries. Electrochimica Acta, 55, 1140–1144. https://doi.org/10.1016/j.electacta.2009.10.014

    Article  Google Scholar 

  261. Shin, H.-J., Jeon, S. S., & Im, S. S. (2011). CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synthetic Metals, 161, 1284–1288. https://doi.org/10.1016/J.SYNTHMET.2011.04.024

    Article  Google Scholar 

  262. Shi, E., Zhang, L., Li, Z., Li, P., Shang, Y., Jia, Y., et al. (2012). TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Scientific Reports, 2, 8–12. https://doi.org/10.1038/srep00884

    Article  Google Scholar 

  263. Miao, X., Tongay, S., Petterson, M. K., Berke, K., Rinzler, A. G., Appleton, B. R., et al. (2012). High efficiency graphene solar cells by chemical doping. Nano Letters, 12, 2745–2750. https://doi.org/10.1021/nl204414u

    Article  Google Scholar 

  264. Salunkhe, R. R., Kamachi, Y., Torad, N. L., Hwang, S. M., Sun, Z., Dou, S. X., et al. (2014). Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. Journal of Materials Chemistry A, 2, 19848–19854. https://doi.org/10.1039/c4ta04277h

    Article  Google Scholar 

Download references

Acknowledgements

Department of Chemistry, Sousangerd Branch, Islamic Azad University, Sousangerd, Iran.

Department of Mechanical Engineering, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey.

Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.

Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.

The authors would like to express their gratitude to the University of Kufa and Al Mustarqbal University College for their support of project.

Author information

Authors and Affiliations

Authors

Contributions

Ghassan Fadhil Smaisim, Azher M. Abed, Hayder Al-Madhhachi, Salema K. Hadrawi, Hasan Mahdi M. Al-Khateeb, ehsan kianfar: investigation, concept, and design, data curation, conceptualization, writing—original draft, reviewing, and editing.

Corresponding authors

Correspondence to Azher M. Abed or Ehsan Kianfar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Research Involving Humans and Animals

The submitted article complies with the ethical guidelines of the journal and does not contain the results of studies involving humans and/or animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12668-024-01391-3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaisim, G.F., Abed, A.M., Al-Madhhachi, H. et al. RETRACTED ARTICLE: Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review. BioNanoSci. 13, 219–248 (2023). https://doi.org/10.1007/s12668-022-01048-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-01048-z

Keywords

Navigation