Skip to main content
Log in

Electro-oxidation of Ethanol on Rh/Pt and Ru/Rh/Pt Sub-monolayers Deposited on Au/C Nanoparticles

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electrocatalysts composed of Pt, and combined RhPt and RuRhPt sub-monolayers deposited on Au/C nanoparticles, were investigated for the electro-oxidation of ethanol. The Au/C substrates were characterized by transmission electron microscopy (TEM) and X-ray absorption near edge structure (XANES) in situ. The electrochemical activity and the products of the ethanol electro-oxidation were investigated by online differential electrochemical mass spectrometry (DEMS). TEM analysis of the Au/C substrate indicated a homogeneous dispersion of the Au atoms onto the carbon support, with particle sizes varying from 5 to 10 nm. The XANES results have evidenced lower increase of the Pt white line magnitude for the mixed layers as the electrode potential was increased. This was associated to a lower oxide formation at the Pt surface due to the presence of neighboring Rh and Ru atoms. Electrochemical stripping of adsorbed CO showed higher activities for the mixed layers as compared to the pure Pt layer and to Pt/C. The electrochemical results for the ethanol electro-oxidation evidenced very similar onset potential for the mixed sub-monolayers and Pt/C. DEMS measurements pointed out a negligible signal of CO2 for the pure Pt layer but an efficiency improvement for the CO2 formation when Rh was present on the electrocatalyst surface. The deposition of a second Pt layer induced a slight increase in the electrocatalyst activity and CO2 formation, which approached to that of Pt/C. It was demonstrated that the electrocatalyst efficiency can be hampered by optimizing the particle shell composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iwasita T, Pastor E (1994) A DEMS and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39:531–537

    Article  CAS  Google Scholar 

  2. de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J Phys Chem B 106:9825–9830

    Article  Google Scholar 

  3. Vielstich W, Gasteiger HA, Lamm A (2003) In: Handbook of fuel cells—fundamentals, technology and applications. Wiley, Chichester

  4. Camara GA, de Lima RB, Iwasita T (2005) The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy. J Electroanal Chem 585:128–131

    Article  CAS  Google Scholar 

  5. Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321

    Article  CAS  Google Scholar 

  6. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger J-M (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908

    Article  CAS  Google Scholar 

  7. Leger J-M, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) How bimetallic electrocatalysts does work for reactions involved in fuel cells?: example of ethanol oxidation and comparison to methanol. Electrochim Acta 50:5118–5125

    Article  CAS  Google Scholar 

  8. Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochim Acta 53:2963–2971

    Article  CAS  Google Scholar 

  9. Lima FHB, Profeti D, Lizcano-Valbuena W, Ticianelli EA, Gonzalez ER (2008) Carbon-dispersed Pt–Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature. J Electroanal Chem 617/2:121–129

    Article  Google Scholar 

  10. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108:10955–10964

    Article  CAS  Google Scholar 

  11. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal–noble metal core–shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704

    Article  CAS  Google Scholar 

  12. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  13. Kitchin JR, Nørskov JK, Barteau MA, Chen G (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3 d transition metals. J Chem Phys 120:10240

    Article  CAS  Google Scholar 

  14. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129

    Article  CAS  Google Scholar 

  15. Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348

    Article  CAS  Google Scholar 

  16. Kristian N, Wang X (2008) Ptshell–Aucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions. Electrochem Commun 10:12–15

    Article  CAS  Google Scholar 

  17. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358

    Article  CAS  Google Scholar 

  18. de Souza JPI, Queiroz SL, Nart FC (2000) The use of mass spectrometry in electrochemical measurements—the DEMS technique. Quim Nova 23(3):384–391

    Google Scholar 

  19. Bittins-Cattaneo B, Cattaneo E, Konigshoven P, Vielstich W (1991) In: Bard AJ (ed) Electroanalytical chemistry—a series of advances, vol 17. Marcel Dekker, New York, p 181

    Google Scholar 

  20. Ianniello R, Ber. Schmidt VM (1995) Simplified DEMS set up for electrocatalytic studies of porous PtRu alloys. Bunsen-Ges Phys Chem 99:83

    CAS  Google Scholar 

  21. Souza JPI, Iwasita T, Nart FC, Vielstich W (1999) Performance evaluation of porous electrocatalysts via normalization of the active surface. J Appl Electrochem 30:43–48

    Article  Google Scholar 

  22. Lima FHB, de Castro JFR, Santos LGRA, Ticianelli EA (2009) Electrocatalysis of oxygen reduction on carbon-supported Pt-co nanoparticles with low Pt content. J Power Souces 190:293–300

    Google Scholar 

  23. McBreen J, O’Grady WE, Pandya KI, Roffman RW, Sayers DE (1987) EXAFS study of the nickel oxide electrode. Langumuir 3:428–433

    Article  CAS  Google Scholar 

  24. Pandya KI, Roffman RW, McBreen J, O’Grady WE (1990) In situ x-ray absorption spectroscopic studies of nickel oxide electrodes. J Electrochem Soc 137:383–388

    Article  CAS  Google Scholar 

  25. van Zon JBAC, Konigsberger DC, Van’t Blik HFJ, Sayers DE (1985) An EXAFS study of the structure of the metal–support interface in highly dispersed Rh/Al2O3 catalysts. J Chem Phys 82:5742

    Article  Google Scholar 

  26. Sasaki K, Wang JX, Naohara H, Marinkovic N, More K, Inada H, Adzic RR (2010) Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim Acta 55:2645–2652

    Article  CAS  Google Scholar 

  27. Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core–shell nanoparticle supports. Electrochem Comm 9:2848–2853

    Article  CAS  Google Scholar 

  28. Adzic RR, Lima FHB (2009) In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells, fundamentals, technology and applications, vol. 5. Wiley, p 5

  29. Angersteinkozlowska H, Conway BE, Hamelin A, Stoicoviciu L (1987) Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane. J Electroanal Chem 228:429–453

    Article  CAS  Google Scholar 

  30. Mrozek MF, Xie Y, Weaver MJ (2001) Surface-enhanced raman scattering on uniform platinum-group overlayers: preparation by redox replacement of underpotential-deposited metals on gold. Anal Chem 73:5953–5960

    Article  CAS  Google Scholar 

  31. Yu Y, Hu Y, Liu X, Deng W, Wang X (2009) The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement. Electrochim Acta 54:3092–3097

    Article  CAS  Google Scholar 

  32. Manne S, Hansma PK, Massie J, Elings VB, Gewirth AA (1991) Atomic-resolution electrochemistry with the atomic force microscope: copper deposition on gold. Science 251:183–186

    Article  CAS  Google Scholar 

  33. Martinez-Ruiz A, Palomar-Pardave M, Batina N (2008) Overpotential deposition of copper on an iodine-modified Au(111) electrode. Electrochimica Acta 53:2115–2120

    Article  CAS  Google Scholar 

  34. Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ (1994) Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem 98:617–625

    Article  CAS  Google Scholar 

  35. Gupta SS, Datta J (2006) A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits. J Electroanal Chem 594:65–72

    Article  Google Scholar 

  36. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  37. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273

    Article  CAS  Google Scholar 

  38. Maillard F, Lu G-Q, Wiechowiski A, Stimming U (2005) Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 109:16230–16243

    Article  CAS  Google Scholar 

  39. Maillard F, Savinova ER, Stimming U (2007) CO monolayer oxidation on Pt nanoparticles: further insights into the particle size effects. J Electroanal Chem 599:221–232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support, the Brazilian Synchrotron Light Laboratory (LNLS) for the XAS experiments, and the MINATEC, Grenoble, for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio H. B. Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, F.H.B., Profeti, D., Chatenet, M. et al. Electro-oxidation of Ethanol on Rh/Pt and Ru/Rh/Pt Sub-monolayers Deposited on Au/C Nanoparticles. Electrocatal 1, 72–82 (2010). https://doi.org/10.1007/s12678-010-0014-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-010-0014-1

Keywords

Navigation