Skip to main content
Log in

First Assessments of the Influence of Oxygen Reduction on the Glycerol Electrooxidation Reaction on Pt

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electroactivity of new nanomaterials candidates to be used as anodes for glycerol fuel cells or electrolysers has been largely investigated, but most of the literature reports the use of O2-free solutions. However, the purging process to extract O2 from glycerol solution and the storage at similar condition is costly. Moreover, the lack of knowledge on the glycerol electrooxidation reaction (GEOR) in the presence of O2 prevents alternative applications, as that in single channel microfluidic fuel cells, when the anode must be selective for the alcohol oxidation in the presence of O2. Herein, we accessed the influence of the oxygen reduction reaction on the GEOR by using a flow system with an electrode in wall-jet configuration. The GEOR is investigated on Pt/C nanoparticles (NPs) in the presence of different amounts of O2 in solution as a proof of concept. We also used synthesized Pt@Au to apply the method for a new material candidate to be used as catalyst in glycerol technologies. The presence of oxygen in solution barely influences GEOR on Pt/C or Pt@Au whenever classic stationary measurements are used. We found comparable electrocatalytic parameters and the same carbonyl products, but at slightly different proportions, in the presence or absence of O2 after long-time electrolysis followed by chromatographic analysis. On the other hand, oxygen competes with glycerol by the active sites when the reactants are convectively forced towards the electrode surface, at flow configuration. The competition between GEOR and oxygen reduction results in a net cathodic current density when using O2-saturated glycerol solution at potentials suitable for the reduction reaction on Pt/C. Pt@Au shows remarkable activity for the oxygen reduction, producing high cathodic currents even in air-saturated glycerol solution. Moreover, the presence of O2 greatly decreases the stability of Pt@Au during GEOR, mainly due to the improved oxygen reduction and extended surface accessed by O2, while same material controversially displayed good stability in N2-saturated solution. The use of flow configuration shed a light on the influence of O2 on GEOR, providing new information non-accessible by other classic stationary methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Marchionni, M. Bevilacqua, C. Bianchini, Y.-X. Chen, J. Filippi, P. Fornasiero, A. Lavacchi, H. Miller, L. Wang, F. Vizza, Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. ChemSusChem 6(3), 518–528 (2013)

    Article  CAS  Google Scholar 

  2. Z. Wang, L. Xin, X. Zhao, Y. Qiu, Z. Zhang, O.A. Baturina, W. Li, Carbon supported Ag nanoparticles with different particle size as cathode catalysts for anion exchange membrane direct glycerol fuel cells. Renew. Energy 62, 556–562 (2014)

    Article  CAS  Google Scholar 

  3. J. Maya-Cornejo, M. Guerra-Balcázar, N. Arjona, L. Álvarez-Contreras, F.J. Rodríguez Valadez, M.P. Gurrola, J. Ledesma-García, L.G. Arriaga, Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@Pd/C and Cu@Pt/C. Fuel 183, 195–205 (2016)

    Article  CAS  Google Scholar 

  4. C.A. Martins, O.A. Ibrahim, P. Pei, E. Kjeang, “Bleaching” glycerol in a microfluidic fuel cell to produce high power density at minimal cost. Chem. Commun. 54(2), 192–195 (2018)

    Article  CAS  Google Scholar 

  5. C.A. Martins, O.A. Ibrahim, P. Pei, E. Kjeang, Towards a fuel-flexible direct alcohol microfluidic fuel cell with flow-through porous electrodes: assessment of methanol, ethylene glycol and glycerol fuels. Electrochim. Acta 271, 537–543 (2018)

    Article  CAS  Google Scholar 

  6. A.T. Marshall, R.G. Haverkamp, Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int. J. Hydrog. Energy 33(17), 4649–4654 (2008)

    Article  CAS  Google Scholar 

  7. J. González-Cobos, S. Baranton, C. Coutanceau, Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals. ChemElectroChem 3(10), 1694–1704 (2016)

    Article  Google Scholar 

  8. K.-E. Guima, L.M. Alencar, G.C. da Silva, M.A.G. Trindade, C.A. Martins, 3D-printed electrolyzer for the conversion of glycerol into tartronate on Pd nanocubes. ACS Sustain. Chem. Eng. 6(1), 1202–1207 (2018)

    Article  CAS  Google Scholar 

  9. C.A. Martins, P.S. Fernández, G.A. Camara, in In Increased Biodiesel Effic. Alternative Uses for Biodiesel Byproduct: Glycerol as Source of Energy and High Valuable Chemicals (Springer, Cham, 2018), pp. 159–186

    Chapter  Google Scholar 

  10. C.R. Zanata, P.S. Fernández, H.E. Troiani, A.L. Soldati, R. Landers, G.A. Camara, A.E. Carvalho, C.A. Martins, Rh-decorated PtIrOx nanoparticles for glycerol electrooxidation: searching for a stable and active catalyst. Appl. Catal. B Environ. 181, 445–455 (2016)

    Article  CAS  Google Scholar 

  11. G.L. Caneppele, T.S. Almeida, C.R. Zanata, É. Teixeira-Neto, P.S. Fernández, G.A. Camara, C.A. Martins, Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition. Appl. Catal. B Environ. 200, 114–120 (2017)

    Article  CAS  Google Scholar 

  12. L. Huang, J.-Y. Sun, S.-H. Cao, M. Zhan, Z.-R. Ni, H.-J. Sun, Z. Chen, Z.-Y. Zhou, E.G. Sorte, Y.J. Tong, S.-G. Sun, Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C. ACS Catal. 6(11), 7686–7695 (2016)

    Article  CAS  Google Scholar 

  13. L. Thia, M. Xie, Z. Liu, X. Ge, Y. Lu, W.E. Fong, X. Wang, Copper-modified gold nanoparticles as highly selective catalysts for glycerol electro-oxidation in alkaline solution. ChemCatChem 8(20), 3272–3278 (2016)

    Article  CAS  Google Scholar 

  14. L.M. Palma, T.S. Almeida, C. Morais, T.W. Napporn, K.B. Kokoh, A.R. de Andrade, Effect of co-catalyst on the selective electrooxidation of glycerol over ruthenium-based nanomaterials. ChemElectroChem 4(1), 39–45 (2017)

    Article  CAS  Google Scholar 

  15. R.G. Da Silva, S. Aquino Neto, K.B. Kokoh, A.R. De Andrade, Electroconversion of glycerol in alkaline medium: from generation of energy to formation of value-added products. J. Power Sources 351, 174–182 (2017)

    Article  Google Scholar 

  16. O.O. Fashedemi, H.A. Miller, A. Marchionni, F. Vizza, K.I. Ozoemena, Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity. J. Mater. Chem. A 3(13), 7145–7156 (2015)

    Article  CAS  Google Scholar 

  17. Y. Kwon, T.J.P. Hersbach, M.T.M. Koper, Electro-oxidation of glycerol on platinum modified by adatoms: activity and selectivity effects. Top. Catal. 57(14-16), 1272–1276 (2014)

    Article  CAS  Google Scholar 

  18. Y. Kwon, Y. Birdja, I. Spanos, P. Rodriguez, M.T.M. Koper, Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal. 2(5), 759–764 (2012)

    Article  CAS  Google Scholar 

  19. S. Lee, H.J. Kim, E.J. Lim, Y. Kim, Y. Noh, G.W. Huber, W.B. Kim, Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process. Green Chem. 18(9), 2877–2887 (2016)

    Article  CAS  Google Scholar 

  20. L.M. Palma, T.S. Almeida, V.L. Oliveira, G. Tremiliosi-Filho, E.R. Gonzalez, A.R. de Andrade, K. Servat, C. Morais, T.W. Napporn, K.B. Kokoh, Identification of chemicals resulted in selective glycerol conversion as sustainable fuel on Pd-based anode nanocatalysts. RSC Adv. 4(110), 64476–64483 (2014)

    Article  CAS  Google Scholar 

  21. H. Wang, L. Thia, N. Li, X. Ge, Z. Liu, X. Wang, Pd nanoparticles on carbon nitride–graphene for the selective electro-oxidation of glycerol in alkaline solution. ACS Catal. 5(6), 3174–3180 (2015)

    Article  CAS  Google Scholar 

  22. Y. Holade, C. Morais, K. Servat, T.W. Napporn, K.B. Kokoh, Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies. ACS Catal. 3(10), 2403–2411 (2013)

    Article  CAS  Google Scholar 

  23. A. Zalineeva, S. Baranton, C. Coutanceau, Bi-modified palladium nanocubes for glycerol electrooxidation. Electrochem. Commun. 34, 335–338 (2013)

    Article  CAS  Google Scholar 

  24. J.C. Abrego-Martínez, A. Moreno-Zuria, F.M. Cuevas-Muñiz, L.G. Arriaga, S. Sun, M. Mohamedi, Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack. J. Power Sources 371, 10–17 (2017)

    Article  Google Scholar 

  25. M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    Article  CAS  Google Scholar 

  26. P.S. Fernández, C.A. Martins, C.A. Angelucci, J.F. Gomes, G.A. Camara, M.E. Martins, G. Tremiliosi-Filho, Evidence for independent glycerol electrooxidation behavior on different ordered domains of polycrystalline platinum. ChemElectroChem 2(2), 263–268 (2015)

    Article  Google Scholar 

  27. S. Fonseca, G.L. Caneppele, R. Backes, B.D. Ferreira, R.A.B. da Silva, C.A. Martins, Modified-screen printed electrode in flow system for measuring the electroactivity of nanoparticles towards alcohol electrooxidation. J. Electroanal. Chem. 789, 38–43 (2017)

    Article  CAS  Google Scholar 

  28. G. Frens, Nature 241, 20 (1973)

    CAS  Google Scholar 

  29. L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, (2004), Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate Electronic supplementary information (ESI) available: AFM image and line scans of core-shell Au-Pt nanoparticle film (colour version of Fig. 4). J. Mater. Chem. 614, 1005. See http://www.rsc.org/suppdata/jm/b3/b314868h/

  30. A.C. Garcia, M.J. Kolb, C. van Nierop y Sanchez, Y.Y. Jan Vos, Y. Birdja, Y. Kwon, G. Tremiliosi-Filho, M.T.M. Koper, Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS Catal. 6(7), 4491–4500 (2016)

    Article  CAS  Google Scholar 

  31. F.J. Vidal-Iglesias, R.M. Arán-Ais, J. Solla-Gullón, E. Herrero, J.M. Feliu, Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal. 2(5), 901–910 (2012)

    Article  CAS  Google Scholar 

  32. A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium. ACS Catal. 5(8), 4819–4824 (2015)

    Article  CAS  Google Scholar 

  33. J.F. Gomes, C.A. Martins, M.J. Giz, G. Tremiliosi-Filho, G.A. Camara, Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects. J. Catal. 301, 154–161 (2013)

    Article  CAS  Google Scholar 

  34. G. Selvarani, S.V. Selvaganesh, S. Krishnamurthy, G.V.M. Kiruthika, P. Sridhar, S. Pitchumani, A.K. Shukla, A methanol-tolerant carbon-supported Pt−Au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C 113(17), 7461–7468 (2009)

    Article  CAS  Google Scholar 

  35. A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, Preferential CO oxidation in hydrogen: reactivity of core−shell nanoparticles. J. Am. Chem. Soc. 132(21), 7418–7428 (2010)

    Article  CAS  Google Scholar 

  36. P.S. Fernández, J. Fernandes Gomes, C.A. Angelucci, P. Tereshchuk, C.A. Martins, G.A. Camara, M.E. Martins, J.L.F. Da Silva, G. Tremiliosi-Filho, Establishing a link between well-ordered Pt(100) surfaces and real systems: how do random superficial defects influence the electro-oxidation of glycerol. ACS Catal. 5(7), 4227–4236 (2015)

    Article  Google Scholar 

  37. P.S. Fernández, P. Tereshchuk, C.A. Angelucci, J.F. Gomes, A.C. Garcia, C.A. Martins, G.A. Camara, M.E. Martins, J.L.F. Da Silva, G. Tremiliosi-Filho, How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces? Phys. Chem. Chem. Phys. 18(36), 25582–25591 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank LNNano-CNPEM (Campinas, Brazil) for the use of the JEOL JEM 2100F microscope.

Funding

The study received financial assistance from CNPq (Grant Nos. 454516/2014-2, 309176/2015-8, and 406779/2016-3), FUNDECT (Grants Nos. 026/2015 and 099/2016), and CAPES and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cauê A. Martins.

Electronic supplementary material

ESM 1

(DOCX 1975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, A.A., Alencar, L.M., Zanata, C.R. et al. First Assessments of the Influence of Oxygen Reduction on the Glycerol Electrooxidation Reaction on Pt. Electrocatalysis 10, 82–94 (2019). https://doi.org/10.1007/s12678-018-0499-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0499-6

Keywords

Navigation