Skip to main content
Log in

An efficient Agrobacterium-mediated transformation protocol for black pepper (Piper nigrum L.) using embryogenic mass as explant

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

A protocol was developed for an efficient Agrobactertium-mediated transformation of black pepper plants through somatic embryogenesis. Embryogenic mass derived from primary somatic embryos that were obtained from the micropylar region of mature germinating seeds of black pepper was found to be the ideal target tissue for transformation. Genetic fidelity test of embryogenic mass-derived plantlets by RAPD using 23 random primers revealed no genetic variation among the progenies and the parent plant. Among the antibiotics used for selection of transformants, cefotaxime at 100 μg mL−1 was found to be optimum to control Agrobacterium besides its ability to promote somatic embryo proliferation. In the case of kanamycin, a step-wise increase in concentration from 25 to 50 and then to 100 μg mL−1 were found to be optimum. Embryogenic mass co-cultivated with Agrobacterium carrying the β-glucuronidase (GUS) reporter gene were cultured on plant growth regulator-free Schenk and Hildebrandt (SH) medium and transformants were selected in selection medium containing cefotaxime and step-wise increase in kanamycin concentration. The transient GUS gene expression was determined histochemically. Transformants that survived in the selection medium were hardened in the greenhouse. An average of nine hardened putative plantlets was obtained per gram of embryogenic mass. The presence of transgene in these plantlets was assayed by PCR, dot blot, and Southern blot hybridization. Results presented demonstrated for the first time an efficient transformation and regeneration of black pepper without the use of growth regulators. This simple efficient procedure would allow transformation of black pepper with genes of desirable characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad N, Fazal H, Abbasi BH, Rashid M, Mahmood, Fatima N. 2010. Efficient regeneration and antioxidant potential in regenerated tissues of Piper nigrum L. Plant Cell Tiss. Organ Cult. 102: 129–134

    Article  CAS  Google Scholar 

  • Alsheikh MK, Suso HP, Robson M, Battey NH, Wetten A. 2002. Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F. v. semperflorens. Plant Cell Rep. 20: 1173–1180

    Article  CAS  Google Scholar 

  • Bairu MW, Fennell CW, van Staden J. 2006. The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’). Sci Hort. 108: 347–351

    Article  CAS  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK. 2005. Transgenic grasspea (Lathyrus sativus L.): Factors influencing Agrobacterium mediated transformation and regeneration. Plant Cell Rep. 24: 523–531

    Article  PubMed  CAS  Google Scholar 

  • Bennici A, Anzidei M, Vendramin GG. 2004. Genetic stability and uniformity of Foeniculum vulgare Mill. regenerated plants through organogenesis and somatic embryogenesis. Plant Sci. 166: 221–227

    Article  CAS  Google Scholar 

  • Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H. 2009. Agrobacterium mediated transformation of friable embryogenic calli and regeneration of trans genic cassava. Nature Protoc. 4: 1845–1854

    Article  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye XD, Armstrong CL. 2004. Factors influencing Agrobacterium mediated transformation of monocotyledonous species. In Vitro Cell Dev. Biol. Plant 40: 31–45

    Article  Google Scholar 

  • de Mayolo GA, Maximova SN, Pishak S, Guiltinan MJ. 2003. Moxalactam as a counter selection antibiotic for Agrobacterium mediated transformation and its positive effects on Theobroma cacao somatic embryogenesis. Plant Sci. 164: 607–615

    Article  Google Scholar 

  • Finer JJ, McMullin MD. 1990. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep. 9: 586–589

    Article  Google Scholar 

  • Han SN, Oh PR, Kim HS, Heo HY, Moon JC, Lee SK, Kim KH, Seo YW, Lee BM. 2009. Effects of antibiotics on suppression of Agrobacterium tumefaciens and plant regeneration from wheat embryo. J. Crop. Sci. Biotech. 10: 92–98

    Google Scholar 

  • Hareesh PS, Bhat AI. 2008. Detection and partial nucleotide analysis of Piper yellow mottle virus infecting black pepper (Piper nigrum L.) in India. Indian J. Virol. 19: 160–167

    Google Scholar 

  • Hei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. Plant J. 6: 271–282

    Article  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2: 208–218

    Article  CAS  Google Scholar 

  • KrishnaRaj S, Bi YM, Saxena PK. 1997. Somatic embryogenesis and Agrobacterium mediated transformation system for scented geraniums (Pelargonium sp. ‘Frensham’). Planta 201: 34–440

    Article  Google Scholar 

  • Kung YJ, Yu TA, Huang CH, Wang HC, Wang SL, Yeh SD. 2010. Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res. 19: 621–635

    Article  PubMed  CAS  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS. 2004. A simple and rapid Agrobacterium mediated transformation protocol for cotton (Gossipium hirsutum L.): Embryogenic calli as a source to gener ate large number of transgenic plants. Plant Cell Rep. 22: 465–470

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Kriseleti D, Ganal MW. 1998. Effect of ticarcillin potassium clavulanate on callus growth and shoot regeneration in Agrobacterium mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep. 17: 843–847

    Article  CAS  Google Scholar 

  • Mallon R, Oubina JR, Gonzalez SL. 2010. In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tiss. Organ. Cult. 101: 31–39

    Article  Google Scholar 

  • Mathias RJ, Boyd LA. 1986. Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L. EM. THELL). Plant Sci. 46: 217–223

    Article  CAS  Google Scholar 

  • Nair RR, Gupta SD. 2003. Somatic emryogenesis and plant regeneration in black pepper (Piper nigrum L.). Direct somatic embryogenesis from tissues of germinating seeds and ontogeny of somatic embryos. J. Hort. Biotech. 78: 416–421

    Google Scholar 

  • Nair RR, Gupta SD. 2006. High frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.). Plant Cell Rep. 24: 699–707

    Article  PubMed  CAS  Google Scholar 

  • Nauerby B, Billing K, Wyndaele R. 1997. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci. 123: 169–177

    Article  CAS  Google Scholar 

  • Oz MT, Eyidogan F, Yucel M, Oktem HA. 2009. Optimized selection and regeneration conditions for Agrobacterium mediated transformation of chickpea cotyledonary nodes. Pak. J. Bot. 41: 2043–2054

    Google Scholar 

  • Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart CN Jr. 1994. Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene. In Vitro Cell Dev. Biol. 30: 144–149

    Google Scholar 

  • Petri C, Noguera SL, Alburquerque N, Egea J, Burgos L. 2008. An antibiotic based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Sci. 175: 777–783

    Article  CAS  Google Scholar 

  • Qin Y, Li HL, Guo YD. 2007. High frequency embryogenesis, regeneration of broccoli (Brassica oleracea var. italica) and analysis of genetic stability by RAPD. Sci. Hort. 111: 203–208

    Article  CAS  Google Scholar 

  • Salaj T, Moravcikova J, Vookova B, Salaj J. 2009. Agrobac terium mediated transformation of embryogenic tissues of hybrid firs (Abies spp.) and regeneration of transgenic emblings. Biotechnol Lett. 31: 647–652

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sasikumar B, Veluthambi K. 1994. Kanamycin sensitivity of cultured tissues of Piper nigrum L. J. Spices Aromatic Crops 3: 158–160

    Google Scholar 

  • Sasikumar B, Veluthambi K. 1996. Transformation of black pepper (Piper nigrum L.) using Agrobacterium mediated Ti-plasmid based vectors. Indian Perfumer 40: 13–16

    Google Scholar 

  • Schenk RU, Hildebrandt AC. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50: 199–204

    Article  CAS  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L, Bapat VA, Rathore TS. 2008. Agrobacterium mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. Plant Cell Tiss. Organ. Cult. 92: 261–271

    Article  CAS  Google Scholar 

  • Sim SL, Jafar R, Power J, Davey MR. 1998. Development of an Agrobacterium mediated transformation system for black pepper (Piper nigrum L.). Acta Hort. 461: 349–353

    Google Scholar 

  • Tang H, Ren Z, Krczal G. 2000. An evaluation of antibiotics for the elimination of Agrobacterium tumefaciens from walnut somatic embryos and for the effects on the proliferation of somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 19: 881–887

    Article  CAS  Google Scholar 

  • Wang AM, Fan HL, Singsit C, Ozias-Akins P. 1998. Transfor mation of peanut with a soybean vspB promoter-uidA chimeric gene. I. Optimization of a transformation system and analysis of GUS expression in primary transgenic tissues and plants. Physiol Plant. 102: 38–48

    Article  CAS  Google Scholar 

  • Wiebke B, Ferreira F, Pasquali G, Bodanese-Zanettini MH, Droste A. 2006. Influence of antibiotics on embryogenic tissue and Agrobacterium tumefaciens suppression in soybean genetic transformation. Bragantia, Campinas 65: 543–551

    Article  CAS  Google Scholar 

  • Xia D, Xiao-yang C, Wei L, Zhi-yan D. 2006. Effects of antibiotics on plantlet regeneration via organogenesis in Populus euphratica For. Stud. China 8: 27–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alangar Ishwara Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, J.M., Bhat, A.I. An efficient Agrobacterium-mediated transformation protocol for black pepper (Piper nigrum L.) using embryogenic mass as explant. J. Crop Sci. Biotechnol. 14, 247–254 (2011). https://doi.org/10.1007/s12892-011-0031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-011-0031-5

Key words

Navigation