Skip to main content
Log in

Sensitivity of Seeds to Chemical Mutagens, Detection of DNA Polymorphisms and Agro-Metrical Traits in M1 Generation of Coffee (Coffea arabica L.)

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Coffee (Coffea Arabica L.) is threatened by biotic and abiotic stresses. Nevertheless, the breeding of Arabica coffee is restricted due to its low genetic diversity. Crop improvement via mutagenesis represents an alternative for increasing genetic variability and facilitating breeding. In this sense, coffee seeds cv. Catuaí were treated for 8 h with a solution of sodium azide (NaN3) (0, 50, 75, 100, and 125 mM) and ethyl methane sulfonate (EMS) (0, 80, 160, 240, 320, and 400 mM). The genetic variability induced in coffee plants after mutagenic treatment with sodium azide was determined by RAPD and AFLP analyses. As the concentration of applied NaN3 and EMS increased, the germination, seedling height, and root length decreased. The LD50 values for NaN3 and EMS were between 50-75 mM and 160-240 mM, respectively. For the 12 RAPD primers evaluated, a total of 46 fragments were obtained of which 34 were polymorphic bands (74%). The amplification with six AFLP selective primer combinations allowed the identification of 36 polymorphisms (17.8%). The analysis revealed that both NaN3 and EMS induced variability within the DNA regions amplified with AFLP and RAPD markers. Finally, under field conditions, significant differences were noticed with respect to plant height, number of nodes in the orthotropic stem, and number of branches of the M1 mutant (NaN3-treated) plants compared to the non-mutant plants. Optimal conditions for NaN3 and EMS mutagenesis using seeds were determined and the optimized conditions have been used to generate a NaN3 mutant M1 coffee var. Catuaí population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuzayed M, El-Dabba N, Frary A, Doganlar S. 2017. GDdom: An online tool for calculation of dominant marker gene diversity. Biochem. Genet. 55(2):155–157

    Article  CAS  PubMed  Google Scholar 

  • Aerts R, Berecha G, Gijbels P, Hundera K, Glabeke S, Vandepitte K, Muys B, Roldán-Ruiz I, Honnay O. 2013. Genetic variation and risks of introgression in the wild Coffea arabica gene pool in south-western Ethiopian montane rainforests. Evol. Appl. 6(2): 243–252

    Article  PubMed  Google Scholar 

  • Ali A, Yubey K, Deka UKr, Tomar SMS. 2014. Effect of sodium azide on seed germination and related agro-metrical traits in M1 lentil (Lens culinaris Medik.) generation. World J. Agric. Sci. 10 (3): 95–102

    Google Scholar 

  • Arena C, Turano M, Hay Mele B, Cataletto PR, Furia M, Pugliese M, De Micco V. 2017. Anatomy, photochemical activity, and DNA polymorphism in leaves of dwarf tomato irradiated with X-rays. Biol. Plant 61(2): 305–314

    Article  CAS  Google Scholar 

  • Arisha MH, Liang BK, Shah SNM, Gong ZH, Li DW. 2014. Kill curve analysis and response of first generation Capsicum annuum L. B12 cultivar to ethyl methane sulfonate. Genet. Mol. Res. 13: 10049–10061

    Article  CAS  PubMed  Google Scholar 

  • Arisha MH, Shah SNM, Gong ZH, Jing H, Cao L, Zhang HX. 2015. Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Front. Plant Sci. 6: 399. doi:10.3389/fpls.2015.00399

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslam R, Bhat TM, Choudhary S, Ansari MYK, Shahwar D. 2017. Estimation of genetic variability, mutagenic effectiveness and efficiency in M2 flower mutant lines of Capsicum annuum L. treated with caffeine and their analysis through RAPD markers. J King Saud Univ. Sci. 29: 274–283

    Article  Google Scholar 

  • Aslam M, Saeed MS, Sattar S, Rehan M, Sajjad M. 2018. Result of chemical mutagenesis on quantitative as well as qualitative traits of maize (Zea mays (L.) Int. J. Pure App. Biosci. 6 (1): 12–15

    Article  Google Scholar 

  • Atienzar FA, Jha AN. 2006. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogene-sis studies: a critical review. Mutat. Res. 613: 76–102

    Article  CAS  PubMed  Google Scholar 

  • Aviya K, Mullainathan L. 2018. Studies on effect of induced mutagenesis on finger millet (Eleusine coracana (L.) Gaertn.) var-CO 13 in M1 generation. Hortic Biotech Res 4: 23–25

    Google Scholar 

  • Behera M, Panigrahi J, Mishra RR, Rath SP. 2012. Analysis of EMS induced in vitro mutants of Asteracantha longifolia (L.) Nees using RAPD markers. Ind. J. Biotech. 11(1): 39–47

    CAS  Google Scholar 

  • Bolívar-González A, Valdez-Melara M, Gatica-Arias A. 2018. Responses of Arabica coffee (Coffea arabica L. var. Catuaí) cell suspensions to chemically induced mutagenesis and salinity stress under in vitro culture conditions. In Vitro Cell Dev. Biol. Plant 54: 576

    Article  CAS  Google Scholar 

  • Campos NA, Panis B, Carpentier SC. 2017. Somatic embryogenesis in coffee: The evolution of biotechnology and the integration of omics technologies offer great opportunities. Front. Plant Sci. 8: 1460

    Article  PubMed  PubMed Central  Google Scholar 

  • da Cunha Galvão LM, Lages-Silva E. 2008. Randomly amplified polymorphic DNA (RAPD) In Molecular Biomethods Handbook, pp 133–147, Totowa, NJ, Humana Press https://doi.org/101007/978-1-60327-375-6_10

    Book  Google Scholar 

  • Dada KE, Anagbogu CF, Forster BP, Muyiwa AA, Adenuga OO, Olaniyi OO, Bado S. 2018. Biological effect of gamma irradiation on vegetative propagation of Coffea arabica L. Afr. J. Plant Sci. 12(6): 122–128

    Article  CAS  Google Scholar 

  • Dhakshanamoorthy D, Selvaraj R, Chidambaram A. 2015. Utility of RAPD marker for genetic diversity analysis in gamma rays and ethyl methane sulphonate (EMS)-treated Jatropha curcas plants. CR Biol. 338(2):75–82

    Article  Google Scholar 

  • dos Santos TB, Budzinski IGF, Marur CJ, Petkowicz CLO, Pereira LFP, Vieira LGE. 2011. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses Plant Physiol. Biochem. 49(4): 441–448

    Google Scholar 

  • Doyle JJ. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15

    Google Scholar 

  • Dhumal KN, Bolbhat SN. 2012. Induction of genetic variability with gamma radiation and its applications in improvement of horsegram. In: Adrovic, Feriz (Ed.), Gamma Radiation. In Tech Publisher, Croatia, pp. 207–228

    Google Scholar 

  • Fain SJ, Quiñones M, Álvarez-Berríos NL, Parés-Ramos IK, Gould WA. 2018. Climate change and coffee: assessing vulnerability by modeling future climate suitability in the Caribbean island of Puerto Rico. Climatic Change 146: 175–186

    Article  Google Scholar 

  • Gandhi ES, Sri Devi A, Mullainathan L. 2014. The effect of ethyl methane sulphonate and diethyl sulphate on chilli (Capsicum annuum L.) in M1 generation. Int. Lett. Nat. Sci. 5: 18-3

  • Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F. 2018. Trends in plant research using molecular markers. Planta 247: 543–557

    Article  CAS  PubMed  Google Scholar 

  • Gatica A, Farag M, Häntzschel K, Matoušek J, Weber G. 2012. The transcription factor AtMYB75/PAP1 regulates the expression of flavonoid biosynthesis genes in transgenic hop (Humulus lupulus L.) Brew. Sci. 65: 103–111

    Google Scholar 

  • Gruszka D, Szarejko I, Maluszynski M. 2012. Sodium azide as a mutagen. In Plant mutation breeding and biotechnology, pp 159–168, Wallingford: CABI https://doi.org/101079/97817806408530159

    Chapter  Google Scholar 

  • Hofmann NE, Raja R, Nelson RL, Korban SS. 2004. Mutagenesis of embryogenic cultures of soybean and detecting polymorphisms using RAPD markers Biol. Plant 48(2): 173–177

    CAS  Google Scholar 

  • Imran M, Dash M, Das TR, Kabi M. 2018. Analysis of induced genetic variability for morphological and floral characters with male sterility in sesame (Sesamum indicum L.). Electron J. Plant Breed. 9(3): 801–807

    Article  Google Scholar 

  • Ivamoto ST, Reis O, Domingues DS, dos Santos TB, de Oliveira FF, et al. 2017. Transcriptome analysis of leaves, flowers and fruits perisperm of Coffea arabica L reveals the differential expression of genes involved in raffinose biosynthesis. PloS One 12(1): e0169595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jankowicz-Cieslak J, Till BJ. 2017. Chemical mutagenesis and chimera dissolution in vegetatively propagated banana. In J Jankowicz-Cieslak, TH Tai, J Kumlehn, BJ Till, eds., Biotechnologies for Plant Mutation Breeding, Springer International Publishing, Cham

    Chapter  Google Scholar 

  • Jones C, Kortenkamp A. 2000. RAPD library fingerprinting of bacterial and human DNA applications in mutation detection. Carcinog. Mutagen 20: 49–63

    Article  CAS  Google Scholar 

  • Joshi N, Ravindran A, Mahajan V. 2011. Investigations on chemical mutagen sensitivity in onion (Allium cepa L.) Int. J. Bot. 7(3): 243–248

    Article  CAS  Google Scholar 

  • Kannan B, Davila-Olivas NH, Lomba P, Altpeter F. 2015. In vitro chemical mutagenesis improves the turf quality of bahiagrass. Plant Cell Tiss. Organ Cult. 120: 551–561

    Article  CAS  Google Scholar 

  • Khan IA, Dahot MU, Seema N, Yasmin S, Bibi S, Raza S, Khatri A. 2009. Genetic variability in sugarcane plantlets developed through in vitro mutagenesis. Pak. J. Bot. 41(1): 153–166

    CAS  Google Scholar 

  • Kumar AP, Boualem A, Bhattacharya A, Parikh S, Desai N, Zambelli A, et al. 2013. SMART–Sunflower mutant population and reverse genetic tool for crop improvement. BMC Plant Biol. 13: 38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskar RA, Laskar AA, Raina A, Khan S, Younus H. 2018. Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. Int. J. Biol. Macromol. 109: 167–179

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Kim YS, Kim JK. 2017. Determination of the optimal condition for ethylmethane sulfonate-mediated mutagenesis in a Korean commercial rice, Japonica cv. Dongjin. Appl. Biol. Chem. 60(3): 241–247

    Article  CAS  Google Scholar 

  • Lu G, Zhang X, Zou Y, Zou Q, Xiang X, Cao J. 2007. Effect of radiation on regeneration of Chinese narcissus and analysis of genetic variation with AFLP and RAPD markers. Plant Cell Tiss. Organ Cult. 88: 319–327

    Article  CAS  Google Scholar 

  • Mba C, Afza R, Bado S, Mohan J. 2010. Induced mutagenesis in plants using physical and chemical agents In: MR Davey, P Anthony P, eds., Plant Cell Culture: Essential Methods 1st ed Wiley-Blackwell, New Jersey, pp 111–130

    Chapter  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, et al. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32(2): 261–285

    Article  CAS  Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, et al. 2009. Mutation discovery for crop improvement J. Exp. Bot. 60(10): 2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE. 2012. GenAlEx 65: genetic analysis in Excel Population genetic software for teaching and research —an update. Bioinformatics Applications Note 28: 2537–2539

    Article  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F. 2003. Methods of data analysis. In: P Hamon, M Seguin, X Perrier, JC Glaszmann, eds., Genetic diversity of cultivated tropical plants, 1st ed Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238

    Article  CAS  Google Scholar 

  • Ribas AF, Pereira LFP, Vieira LGE. 2006. Genetic transformation of coffee. Braz. J. Plant Physiol. 18(1): 83–94

    Article  CAS  Google Scholar 

  • Roldan-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp) Mol. Breed. 6: 125–134

    Article  CAS  Google Scholar 

  • Roychowdhury R, Tah J. 2011. Germination behaviors in M2 generation Dianthus after chemical mutagenesis. Int. J. Adv. Sci.Technol. Res. 1(2): 448–454

    Google Scholar 

  • Sagastume H, Molina L, Ávalos A. 2003. Caracterización molecular, mediante AFLP, de la colección de variedades de frijol (Phaseolus vulgaris L) liberadas por el ICTA Proyecto FODECYT No15-01 Guatemala: ICTA SENACYT

    Google Scholar 

  • Sandhu SS, Bastos CR, Azini LE, Tulmann Neto A, Colombo C. 2002. RAPD analysis of herbicide-resistant Brasilian rice lines produced via mutagenesis. Genet. Mol. Res. 1(4): 359–70

    CAS  PubMed  Google Scholar 

  • Senapati SK, Rout GR. 2011. In vitro mutagenesis in Rosa hybrida using oryzalin as a mutagen and screening of mutants by randomly amplified polymorphic DNA (RAPD) marker. Afr. J. Biotech. 10(30): 5705–5712

    CAS  Google Scholar 

  • Serrat X, Esteban R, Guibourt N, Moysset L, Nogués S, Lalanne E. 2014. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10: 5

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva M do C, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, et al. 2006. Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz. J. Plant Physiol. 18(1): 119–147

    Article  Google Scholar 

  • Sivolap YM, Volkodav VV, Balvinska MS, Kozhukhova NE, Solodenko AE, Chebotar SV. 2004. Identification and registration of genotypes of common wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), maize (Zea mays L.), and sunflower (Helianthus annuus L.) using microsatellite locus analysis: guide lines manual, Odessa, p. 14

    Google Scholar 

  • Suprasanna P, Mirajkar S, Bhagwat S. 2015. Induced mutations and crop improvement. In: B Bahadur, M Rajam, L Sahijram, K Krishnamurthy, eds., Plant Biology and Biotechnol Vol I: Plant Diversity, Organization, Function and Improvement, 1st ed Springer International Publishing, New York, pp 593–617

    Chapter  Google Scholar 

  • Talebi AB, Talebi AB, Shahrokhifar B. 2012. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. Am. J. Plant Sci. 3: 1661–1665

    Article  CAS  Google Scholar 

  • Tellez E, Herrera RR, Saucedo AEM. 2009. Genotipificación de 2 mutantes de la variedad “golden delicious” de manzano utilizando AFLP´S Retrieved from http://wwwuaqmx/investigacion/difusion/veranos/memorias-2009/11VCRC_46/33_Tellez_Chavezpdf

    Google Scholar 

  • Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP, Jones JD. 1995. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J. 8(5): 785–94

    Article  CAS  PubMed  Google Scholar 

  • Tomlekova N, Spasova-Apostolova V, Panchev I. 2016. RAPD analysis of Bulgarian pepper induced mutant. Compt. Rend. Acad. Bulg. Sci. 69(6): 731–738

    CAS  Google Scholar 

  • van Harten AM. 1998. Mutation breeding: theory and practical applications. Cambridge University Press, New York

    Google Scholar 

  • Wang LN, Zhang B, Li JR, Yang XY, Ren ZH. 2014. Ethyl Methane sulfonate (EMS)-mediated mutagenesis of cucumber (Cucumis sativus L.) Agric. Sci. 5: 716–721

    Google Scholar 

  • Wannajindaporn A, Poolsawat O, Chaowiset W, Tantasawat P. 2014. Evaluation of genetic variability in in vitro sodium azide-induced Dendrobium “Earsakul” mutants. Genet Mol. Res. 13(3): 5333–5342

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Shu QY, Li C. 2012. Applications of DNA marker techniques in plant mutation research. In Plant Mutation Breeding and Biotechnology, pp 287–298, Wallingford: CABI https://doi.org/101079/97817806408530287

    Google Scholar 

Download references

Acknowledgments

This study was financed by the University of Costa Rica, the Ministerio de Ciencia, Tecnology Telecomunicaciones (MICITT) and the Consejo Nacional para Investigaciones Cientcas y Tecnolas (CONICIT) (project No. 111-B5- 140; FI-030B-14). The authors would like to thank Dr. Paul Hanson (School of Biology, University of Costa Rica) for language correction of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.V.S designed and performed the experiments and analyzed data; E.L.G performed the phenotyping of the M1 mutants; E.A.V. performed AFLPs and analyzed data; M.V.M. discussed the results and edited the paper; A.G.A conceived the project, designed and coordinated the experiments, analyzed data, and wrote the paper.

Corresponding author

Correspondence to Andrés Gatica-Arias.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Segura, C., López-Gamboa, E., Araya-Valverde, E. et al. Sensitivity of Seeds to Chemical Mutagens, Detection of DNA Polymorphisms and Agro-Metrical Traits in M1 Generation of Coffee (Coffea arabica L.). J. Crop Sci. Biotechnol. 22, 451–464 (2019). https://doi.org/10.1007/s12892-019-0175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-019-0175-0

Key words

Navigation