Skip to main content

Advertisement

Log in

Acute T2*-Weighted Magnetic Resonance Imaging Detectable Cerebral Thrombosis in a Rat Model of Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is associated with a high incidence of morbidity and mortality, particularly within the first 72 h after aneurysm rupture. We recently found ultra-early cerebral thrombosis, detectable on T2* magnetic resonance imaging (MRI), in a mouse SAH model at 4 h after onset. The current study examined whether such changes also occur in rat at 24 h after SAH, the vessels involved, whether the degree of thrombosis varied with SAH severity and brain injury, and if it differed between male and female rats. Adult Sprague Dawley rats were subjected to an endovascular perforation SAH model or sham surgery and underwent T2 and T2* MRI 24 h later. Following SAH, increased numbers of T2* hypointense vessels were detected on MRI. The number of such vessels correlated with SAH severity, as assessed by MRI-based grading of bleeding. Histologically, thrombotic vessels were found on hematoxylin and eosin staining, had a single layer of smooth muscle cells on alpha-smooth muscle actin immunostaining, and had laminin 2α/fibrinogen double labeling, suggesting venule thrombosis underlies the T2*-positive vessels on MRI. Capillary thrombosis was also detected which may follow the venous thrombosis. In both male and female rats, the number of T2*-positive thrombotic vessels correlated with T2 lesion volume and neurological function, and the number of such vessels was significantly greater in female rats. In summary, this study identified cerebral venous thrombosis 24 h following SAH in rats that could be detected with T2* MRI imaging and may contribute to SAH-induced brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25(7):1342–7. https://doi.org/10.1161/01.str.25.7.1342.

    Article  CAS  PubMed  Google Scholar 

  2. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42. https://doi.org/10.1016/S1474-4422(09)70126-7.

    Article  PubMed  Google Scholar 

  3. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432–46. https://doi.org/10.1007/s12975-013-0257-2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vergouwen MD, Vermeulen M, Coert BA, Stroes ES, Roos YB. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28(11):1761–70. https://doi.org/10.1038/jcbfm.2008.74.

    Article  PubMed  Google Scholar 

  5. Clarke JV, Suggs JM, Diwan D, Lee JV, Lipsey K, Vellimana AK, et al. Microvascular platelet aggregation and thrombosis after subarachnoid hemorrhage: A review and synthesis. J Cereb Blood Flow Metab. 2020;40(8):1565–75. https://doi.org/10.1177/0271678X20921974.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dienel A, Ammassam Veettil R, Hong SH, Matsumura K, Kumar TP, Yan Y, et al. Microthrombi Correlates With Infarction and Delayed Neurological Deficits After Subarachnoid Hemorrhage in Mice. Stroke. 2020;51(7):2249–54. https://doi.org/10.1161/STROKEAHA.120.029753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sabri M, Ai J, Lakovic K, D’Abbondanza J, Ilodigwe D, Macdonald RL. Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience. 2012;224:26–37. https://doi.org/10.1016/j.neuroscience.2012.08.002.

    Article  CAS  PubMed  Google Scholar 

  8. Grote E, Hassler W. The critical first minutes after subarachnoid hemorrhage. Neurosurgery. 1988;22(4):654–61. https://doi.org/10.1227/00006123-198804000-00006.

    Article  CAS  PubMed  Google Scholar 

  9. Aguiar de Sousa D, Lucas Neto L, Jung S, Penas S, Panos L, Heldner MR, et al. Brush Sign Is Associated With Increased Severity in Cerebral Venous Thrombosis. Stroke. 2019;50(6):1574–7. https://doi.org/10.1161/STROKEAHA.119.025342.

    Article  PubMed  Google Scholar 

  10. Buyck PJ, Zuurbier SM, Garcia-Esperon C, Barboza MA, Costa P, Escudero I, et al. Diagnostic accuracy of noncontrast CT imaging markers in cerebral venous thrombosis. Neurology. 2019;92(8):e841–51. https://doi.org/10.1212/WNL.0000000000006959.

    Article  PubMed  Google Scholar 

  11. Lv B, Tian CL, Cao XY, Liu XF, Wang J, Yu SY. Role of diffusion-weighted imaging in the diagnosis of cerebral venous thrombosis. J Int Med Res. 2020;48(6):300060520933448. https://doi.org/10.1177/0300060520933448.

    Article  CAS  PubMed  Google Scholar 

  12. Ta HT, Arndt N, Wu Y, Lim HJ, Landeen S, Zhang R, et al. Activatable magnetic resonance nanosensor as a potential imaging agent for detecting and discriminating thrombosis. Nanoscale. 2018;10(31):15103–15. https://doi.org/10.1039/c8nr05095c.

    Article  CAS  PubMed  Google Scholar 

  13. Ta HT, Li Z, Hagemeyer CE, Cowin G, Zhang S, Palasubramaniam J, et al. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials. 2017;134:31–42. https://doi.org/10.1016/j.biomaterials.2017.04.037.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Chen J, Toyota Y, Keep RF, Xi G, Hua Y. Ultra-Early Cerebral Thrombosis Formation After Experimental Subarachnoid Hemorrhage Detected on T2* Magnetic Resonance Imaging. Stroke. 2021:STROKEAHA120032397. https://doi.org/10.1161/STROKEAHA.120.032397

  15. Longstreth WT Jr, Koepsell TD, Yerby MS, van Belle G. Risk factors for subarachnoid hemorrhage. Stroke. 1985;16(3):377–85. https://doi.org/10.1161/01.str.16.3.377.

    Article  PubMed  Google Scholar 

  16. Kongable GL, Lanzino G, Germanson TP, Truskowski LL, Alves WM, Torner JC, et al. Gender-related differences in aneurysmal subarachnoid hemorrhage. J Neurosurg. 1996;84(1):43–8. https://doi.org/10.3171/jns.1996.84.1.0043.

    Article  CAS  PubMed  Google Scholar 

  17. Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30(11):1793–803. https://doi.org/10.1038/jcbfm.2010.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Egashira Y, Hua Y, Keep RF, Xi G. Acute white matter injury after experimental subarachnoid hemorrhage: potential role of lipocalin 2. Stroke. 2014;45(7):2141–3. https://doi.org/10.1161/STROKEAHA.114.005307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Egashira Y, Shishido H, Hua Y, Keep RF, Xi G. New grading system based on magnetic resonance imaging in a mouse model of subarachnoid hemorrhage. Stroke. 2015;46(2):582–4. https://doi.org/10.1161/STROKEAHA.114.007834.

    Article  PubMed  Google Scholar 

  20. Dang G, Yang Y, Wu G, Hua Y, Keep RF, Xi G. Early Erythrolysis in the Hematoma After Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2017;8(2):174–82. https://doi.org/10.1007/s12975-016-0505-3.

    Article  CAS  PubMed  Google Scholar 

  21. Tan XX, Chen JY, Keep RF, Xi GH, Hua Y. Prx2 (Peroxiredoxin 2) as a Cause of Hydrocephalus After Intraventricular Hemorrhage. Stroke. 2020;51(5):1578–86. https://doi.org/10.1161/Strokeaha.119.028672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wan Y, Gao F, Ye F, Yang W, Hua Y, Keep RF, et al. Effects of aging on hydrocephalus after intraventricular hemorrhage. Fluids Barriers CNS. 2020;17(1):8. https://doi.org/10.1186/s12987-020-0169-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei J, Wang M, Jing C, Keep RF, Hua Y, Xi G. Multinucleated Giant Cells in Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2020;11(5):1095–102. https://doi.org/10.1007/s12975-020-00790-4.

    Article  CAS  PubMed  Google Scholar 

  24. Hannocks MJ, Pizzo ME, Huppert J, Deshpande T, Abbott NJ, Thorne RG, et al. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab. 2018;38(4):669–86. https://doi.org/10.1177/0271678X17749689.

    Article  CAS  PubMed  Google Scholar 

  25. Behrouzi R, Punter M. Diagnosis and management of cerebral venous thrombosis. Clin Med (Lond). 2018;18(1):75–9. https://doi.org/10.7861/clinmedicine.18-1-75.

    Article  Google Scholar 

  26. Tiebosch IA, van den Bergh WM, Bouts MJ, Zwartbol R, van der Toorn A, Dijkhuizen RM. Progression of brain lesions in relation to hyperperfusion from subacute to chronic stages after experimental subarachnoid hemorrhage: a multiparametric MRI study. Cerebrovasc Dis. 2013;36(3):167–72. https://doi.org/10.1159/000352048.

    Article  PubMed  Google Scholar 

  27. Shimoda M, Takeuchi M, Tominaga J, Oda S, Kumasaka A, Tsugane R. Asymptomatic versus symptomatic infarcts from vasospasm in patients with subarachnoid hemorrhage: serial magnetic resonance imaging. Neurosurgery. 2001;49(6):1341–8. https://doi.org/10.1097/00006123-200112000-00010 (discussion 8-50).

    Article  CAS  PubMed  Google Scholar 

  28. Kivisaari RP, Salonen O, Servo A, Autti T, Hernesniemi J, Ohman J. MR imaging after aneurysmal subarachnoid hemorrhage and surgery: a long-term follow-up study. AJNR Am J Neuroradiol. 2001;22(6):1143–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rashad S, Niizuma K, Sato-Maeda M, Fujimura M, Mansour A, Endo H, et al. Early BBB breakdown and subacute inflammasome activation and pyroptosis as a result of cerebral venous thrombosis. Brain Res. 2018;1699:54–68. https://doi.org/10.1016/j.brainres.2018.06.029.

    Article  CAS  PubMed  Google Scholar 

  30. Dewyer NA, Sood V, Lynch EM, Luke CE, Upchurch GR Jr, Wakefield TW, et al. Plasmin inhibition increases MMP-9 activity and decreases vein wall stiffness during venous thrombosis resolution. J Surg Res. 2007;142(2):357–63. https://doi.org/10.1016/j.jss.2007.03.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding Y, Li X. Resistin Promotes Thrombosis in Rats with Deep Vein Thrombosis via Up-Regulating MMP-2, MMP-9, and PAI-1. Clin Lab. 2019;65(10). https://doi.org/10.7754/Clin.Lab.2019.181119

  32. Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, et al. MRI Characterization in the Acute Phase of Experimental Subarachnoid Hemorrhage. Transl Stroke Res. 2017;8(3):234–43. https://doi.org/10.1007/s12975-016-0511-5.

    Article  CAS  PubMed  Google Scholar 

  33. Shishido H, Zhang H, Okubo S, Hua Y, Keep RF, Xi G. The Effect of Gender on Acute Hydrocephalus after Experimental Subarachnoid Hemorrhage. Acta Neurochir Suppl. 2016;121:335–9. https://doi.org/10.1007/978-3-319-18497-5_58.

    Article  PubMed  Google Scholar 

  34. Prunell GF, Mathiesen T, Diemer NH, Svendgaard NA. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery. 2003;52(1):165–75. https://doi.org/10.1097/00006123-200301000-00022 (discussion 75-6).

    Article  PubMed  Google Scholar 

  35. Shishido H, Egashira Y, Okubo S, Zhang H, Hua Y, Keep RF, et al. A magnetic resonance imaging grading system for subarachnoid hemorrhage severity in a rat model. J Neurosci Methods. 2015;243:115–9. https://doi.org/10.1016/j.jneumeth.2015.01.035.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Friedrich V, Bederson JB, Sehba FA. Gender influences the initial impact of subarachnoid hemorrhage: an experimental investigation. PLoS ONE. 2013;8(11):e80101. https://doi.org/10.1371/journal.pone.0080101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Etminan N, Chang HS, Hackenberg K, de Rooij NK, Vergouwen MDI, Rinkel GJE, et al. Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population: A Systematic Review and Meta-analysis. JAMA Neurol. 2019;76(5):588–97. https://doi.org/10.1001/jamaneurol.2019.0006.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

YH, RFK, and GX were supported by grants NS-096917, NS106746, NS112394, and NS116786 from the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Xi.

Ethics declarations

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Peng, K., Ye, F. et al. Acute T2*-Weighted Magnetic Resonance Imaging Detectable Cerebral Thrombosis in a Rat Model of Subarachnoid Hemorrhage. Transl. Stroke Res. 13, 188–196 (2022). https://doi.org/10.1007/s12975-021-00918-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00918-0

Keywords

Navigation