Skip to main content

Advertisement

Log in

The Fate of Erythrocytes after Cerebral Hemorrhage

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

After a cerebral hemorrhage (intracerebral, subarachnoid, and intraventricular), extravasated blood contributes to both initial brain injury, via physical disruption and mass effect, and secondary injury, through the release of potentially neurotoxic and pro-inflammatory factors such as hemoglobin, iron, and peroxiredoxin-2. Erythrocytes are a major blood component and are a source of such damaging factors. Erythrolysis after cerebral hemorrhage releases potential neurotoxins, contributing to brain injury and edema. Alternatively, erythrocyte phagocytosis via microglia or macrophages may limit the spill of neurotoxins therefore limiting subsequent brain injury. The aim of this review is to discuss the process of phagocytosis of erythrocytes by microglia or macrophages after cerebral hemorrhage, the effect of erythrolysis on brain injury, novel mechanisms of erythrocyte and phagocyte egress from the brain, and exciting new targets in this pathway to attenuate brain injury. Understanding the fate of erythrocytes after cerebral hemorrhage may uncover additional potential interventions for clinical translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilkinson DA, Keep RF, Hua Y, Xi G. Hematoma clearance as a therapeutic target in intracerebral hemorrhage: from macro to micro. J Cereb Blood Flow Metab. 2018;38(4):741–5. https://doi.org/10.1177/0271678X17753590.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol. 2014;115:45–63. https://doi.org/10.1016/j.pneurobio.2013.09.007.

    Article  PubMed  Google Scholar 

  3. Peng K, Koduri S, Xia F, Gao F, Hua Y, Keep RF, et al. Impact of sex differences on thrombin-induced hydrocephalus and white matter injury: the role of neutrophils. Fluids Barriers CNS. 2021;18(1):38. https://doi.org/10.1186/s12987-021-00273-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo F, Hua Y, Wang J, Keep RF, Xi G. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Transl Stroke Res. 2012;3(1):130–7. https://doi.org/10.1007/s12975-011-0106-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bian L, Zhang J, Wang M, Keep RF, Xi G, Hua Y. Intracerebral hemorrhage-induced brain injury in rats: the role of extracellular peroxiredoxin 2. Transl Stroke Res. 2020;11(2):288–95. https://doi.org/10.1007/s12975-019-00714-x.

    Article  PubMed  Google Scholar 

  6. Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287–93. https://doi.org/10.3171/jns.2002.96.2.0287.

    Article  PubMed  Google Scholar 

  7. Chen T, Tan X, Xia F, Hua Y, Keep RF, Xi G. Hydrocephalus induced by intraventricular peroxiredoxin-2: the role of macrophages in the choroid plexus. Biomolecules. 2021;11(5). https://doi.org/10.3390/biom11050654.

  8. Keep RF, Xi G, Hua Y, Xiang J. Clot formation, vascular repair and hematoma resolution after ICH, a coordinating role for thrombin? Acta Neurochir Suppl. 2011;111:71–5. https://doi.org/10.1007/978-3-7091-0693-8_12.

    Article  PubMed  Google Scholar 

  9. Ye F, Garton HJL, Hua Y, Keep RF, Xi G. The role of thrombin in brain injury after hemorrhagic and ischemic stroke. Transl Stroke Res. 2021;12(3):496–511. https://doi.org/10.1007/s12975-020-00855-4.

    Article  PubMed  Google Scholar 

  10. Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9. https://doi.org/10.1161/01.STR.0000103140.52838.45.

    Article  CAS  PubMed  Google Scholar 

  11. Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):1070–5. https://doi.org/10.1038/jcbfm.2014.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dang G, Yang Y, Wu G, Hua Y, Keep RF, Xi G. Early erythrolysis in the hematoma after experimental intracerebral hemorrhage. Transl Stroke Res. 2017;8(2):174–82. https://doi.org/10.1007/s12975-016-0505-3.

    Article  CAS  PubMed  Google Scholar 

  13. Cao S, Zheng M, Hua Y, Chen G, Keep RF, Xi G. Hematoma changes during clot resolution after experimental intracerebral hemorrhage. Stroke. 2016;47(6):1626–31. https://doi.org/10.1161/STROKEAHA.116.013146.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Wang L, Xu H, Xing L, Zhuang Z, Zheng Y, et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat Commun. 2020;11(1):3159. https://doi.org/10.1038/s41467-020-16851-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 2016;22(8):945–51. https://doi.org/10.1038/nm.4146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89(6):991–6. https://doi.org/10.3171/jns.1998.89.6.0991.

    Article  CAS  PubMed  Google Scholar 

  17. Wang M, Xia F, Wan S, Hua Y, Keep RF, Xi G. Role of complement component 3 in early erythrolysis in the hematoma after experimental intracerebral hemorrhage. Stroke. 2021;52(8):2649–60. https://doi.org/10.1161/STROKEAHA.121.034372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang M, Hua Y, Keep RF, Wan S, Novakovic N, Xi G. Complement inhibition attenuates early erythrolysis in the hematoma and brain injury in aged rats. Stroke. 2019;50(7):1859–68. https://doi.org/10.1161/STROKEAHA.119.025170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holste K, Xia F, Garton HJL, Wan S, Hua Y, Keep RF, et al. The role of complement in brain injury following intracerebral hemorrhage: A review. Exp Neurol. 2021;340:113654. https://doi.org/10.1016/j.expneurol.2021.113654.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke. 2001;32(1):162–7. https://doi.org/10.1161/01.str.32.1.162.

    Article  CAS  PubMed  Google Scholar 

  21. German JW, Gross CE, Giclas P, Watral W, Bednar MM. Systemic complement depletion inhibits experimental cerebral vasospasm. Neurosurgery. 1996;39(1):141–5; discussion 5–6. https://doi.org/10.1097/00006123-199607000-00028.

  22. Yang S, Nakamura T, Hua Y, Keep RF, Younger JG, He Y, et al. The role of complement C3 in intracerebral hemorrhage-induced brain injury. J Cereb Blood Flow Metab. 2006;26(12):1490–5. https://doi.org/10.1038/sj.jcbfm.9600305.

    Article  CAS  PubMed  Google Scholar 

  23. Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92(6):1016–22. https://doi.org/10.3171/jns.2000.92.6.1016.

    Article  CAS  PubMed  Google Scholar 

  24. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3. https://doi.org/10.1161/STROKEAHA.108.539536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dai S, Hua Y, Keep RF, Novakovic N, Fei Z, Xi G. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats. Neurobiol Dis. 2019;126:76–84. https://doi.org/10.1016/j.nbd.2018.06.001.

    Article  CAS  PubMed  Google Scholar 

  26. Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res. 2013;4(5):546–53. https://doi.org/10.1007/s12975-013-0270-5.

    Article  CAS  PubMed  Google Scholar 

  27. Weiler JM, Edens RE, Linhardt RJ, Kapelanski DP. Heparin and modified heparin inhibit complement activation in vivo. J Immunol. 1992;148(10):3210–5.

    CAS  PubMed  Google Scholar 

  28. LaRocca TJ, Stivison EA, Hod EA, Spitalnik SL, Cowan PJ, Randis TM, et al. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio. 2014;5(5):e01251–14. https://doi.org/10.1128/mBio.01251-14.

  29. Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol. 2012;44(8):1236–43. https://doi.org/10.1016/j.biocel.2012.04.019.

    Article  CAS  PubMed  Google Scholar 

  30. Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286(5):826–54. https://doi.org/10.1111/febs.14606.

    Article  CAS  PubMed  Google Scholar 

  31. Freedman JC. Partial requirements for in vitro survival of human red blood cells. J Membr Biol. 1983;75(3):225–31. https://doi.org/10.1007/BF01871953.

    Article  CAS  PubMed  Google Scholar 

  32. Wu G, Xi G, Hua Y, Sagher O. T2* magnetic resonance imaging sequences reflect brain tissue iron deposition following intracerebral hemorrhage. Transl Stroke Res. 2010;1(1):31–4. https://doi.org/10.1007/s12975-009-0008-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Novakovic N, Linzey JR, Chenevert TL, Gemmete JJ, Troost JP, Xi G et al. White matter survival within and around the hematoma: quantification by MRI in patients with intracerebral hemorrhage. Biomolecules. 2021;11(6). https://doi.org/10.3390/biom11060910.

  34. Wei J, Novakovic N, Chenevert TL, Xi G, Keep RF, Pandey AS, et al. Perihematomal brain tissue iron concentration measurement by MRI in patients with intracerebral hemorrhage. CNS Neurosci Ther. 2020;26(9):896–901. https://doi.org/10.1111/cns.13395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaudhary N, Pandey AS, Griauzde J, Gemmete JJ, Chenevert TL, Keep RF, et al. Brain tissue iron quantification by MRI in intracerebral hemorrhage: current translational evidence and pitfalls. J Cereb Blood Flow Metab. 2019;39(3):562–4. https://doi.org/10.1177/0271678X18818911.

    Article  CAS  PubMed  Google Scholar 

  36. Liu R, Li H, Hua Y, Keep RF, Xiao J, Xi G, et al. Early hemolysis within human intracerebral hematomas: an MRI study. Transl Stroke Res. 2019;10(1):52–6. https://doi.org/10.1007/s12975-018-0630-2.

    Article  CAS  PubMed  Google Scholar 

  37. Novakovic N, Wilseck ZM, Chenevert TL, Xi G, Keep RF, Pandey AS, et al. Assessing early erythrolysis and the relationship to perihematomal iron overload and white matter survival in human intracerebral hemorrhage. CNS Neurosci Ther. 2021;27(10):1118–26. https://doi.org/10.1111/cns.13693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368(25):2355–65. https://doi.org/10.1056/NEJMoa1214609.

    Article  CAS  PubMed  Google Scholar 

  39. Rabinstein AA. Optimal blood pressure after intracerebral hemorrhage: still a moving target. Stroke. 2018;49(2):275–6. https://doi.org/10.1161/STROKEAHA.117.020058.

    Article  PubMed  Google Scholar 

  40. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375(11):1033–43. https://doi.org/10.1056/NEJMoa1603460.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bryk AH, Wisniewski JR. Quantitative analysis of human red blood cell proteome. J Proteome Res. 2017;16(8):2752–61. https://doi.org/10.1021/acs.jproteome.7b00025.

    Article  CAS  PubMed  Google Scholar 

  42. Tan X, Chen J, Keep RF, Xi G, Hua Y. Prx2 (peroxiredoxin 2) as a cause of hydrocephalus after intraventricular hemorrhage. Stroke. 2020;51(5):1578–86. https://doi.org/10.1161/STROKEAHA.119.028672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med. 2012;18(6):911–7. https://doi.org/10.1038/nm.2749.

    Article  CAS  PubMed  Google Scholar 

  44. Ni W, Mao S, Xi G, Keep RF, Hua Y. Role of erythrocyte CD47 in intracerebral hematoma clearance. Stroke. 2016;47(2):505–11. https://doi.org/10.1161/STROKEAHA.115.010920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jing C, Bian L, Wang M, Keep RF, Xi G, Hua Y. Enhancement of hematoma clearance with CD47 blocking antibody in experimental intracerebral hemorrhage. Stroke. 2019;50(6):1539–47. https://doi.org/10.1161/STROKEAHA.118.024578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tao C, Keep RF, Xi G, Hua Y. CD47 blocking antibody accelerates hematoma clearance after intracerebral hemorrhage in aged rats. Transl Stroke Res. 2020;11(3):541–51. https://doi.org/10.1007/s12975-019-00745-4.

    Article  CAS  PubMed  Google Scholar 

  47. Ye F, Hua Y, Keep RF, Xi G, Garton HJL. CD47 blocking antibody accelerates hematoma clearance and alleviates hydrocephalus after experimental intraventricular hemorrhage. Neurobiol Dis. 2021;155:105384. https://doi.org/10.1016/j.nbd.2021.105384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chang CF, Goods BA, Askenase MH, Beatty HE, Osherov A, DeLong JH, et al. Divergent functions of tissue-resident and blood-derived macrophages in the hemorrhagic brain. Stroke. 2021;52(5):1798–808. https://doi.org/10.1161/STROKEAHA.120.032196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wan H, Brathwaite S, Ai J, Hynynen K, Macdonald RL. Role of perivascular and meningeal macrophages in outcome following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2021;41(8):1842–57. https://doi.org/10.1177/0271678X20980296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao X, Grotta J, Gonzales N, Aronowski J. Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke. 2009;40(3 Suppl):S92–4. https://doi.org/10.1161/STROKEAHA.108.533158.

    Article  CAS  PubMed  Google Scholar 

  51. Fang H, Chen J, Lin S, Wang P, Wang Y, Xiong X, et al. CD36-mediated hematoma absorption following intracerebral hemorrhage: negative regulation by TLR4 signaling. J Immunol. 2014;192(12):5984–92. https://doi.org/10.4049/jimmunol.1400054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev. 2019;2019:9613090. https://doi.org/10.1155/2019/9613090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol. 2007;61(4):352–62. https://doi.org/10.1002/ana.21097.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao X, Sun G, Ting SM, Song S, Zhang J, Edwards NJ, et al. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem. 2015;133(1):144–52. https://doi.org/10.1111/jnc.12974.

    Article  CAS  PubMed  Google Scholar 

  55. Chang CF, Massey J, Osherov A, Angenendt da Costa LH, Sansing LH. Bexarotene enhances macrophage erythrophagocytosis and hematoma clearance in experimental intracerebral hemorrhage. Stroke. 2020;51(2):612–8. https://doi.org/10.1161/STROKEAHA.119.027037.

  56. Xu J, Chen Z, Yu F, Liu H, Ma C, Xie D, et al. IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci U S A. 2020;117(51):32679–90. https://doi.org/10.1073/pnas.2018497117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei J, Wang M, Jing C, Keep RF, Hua Y, Xi G. Multinucleated giant cells in experimental intracerebral hemorrhage. Transl Stroke Res. 2020;11(5):1095–102. https://doi.org/10.1007/s12975-020-00790-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen J, Koduri S, Dai S, Toyota Y, Hua Y, Chaudhary N, et al. Intra-hematomal white matter tracts act as a scaffold for macrophage infiltration after intracerebral hemorrhage. Transl Stroke Res. 2021;12(5):858–65. https://doi.org/10.1007/s12975-020-00870-5.

    Article  CAS  PubMed  Google Scholar 

  59. Toyama K, Imazumi T, Yoshifuji K, Miyata K, Kawamura M, Kohama I. Study on hemosiderin deposition after intracerebral hemorrhage. No Shinkei Geka. 2005;33(12):1177–81.

    CAS  PubMed  Google Scholar 

  60. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52. https://doi.org/10.1097/01.WCB.0000073905.87928.6D.

    Article  CAS  PubMed  Google Scholar 

  61. Mezey E, Szalayova I, Hogden CT, Brady A, Dosa A, Sotonyi P et al. An immunohistochemical study of lymphatic elements in the human brain. Proc Natl Acad Sci U S A. 2021;118(3). https://doi.org/10.1073/pnas.2002574118.

  62. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1(1):2. https://doi.org/10.1186/1743-8454-1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6):2429–57. https://doi.org/10.1007/s00018-020-03706-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Norwood JN, Zhang Q, Card D, Craine A, Ryan TM, Drew PJ. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Elife. 2019;8. https://doi.org/10.7554/eLife.44278.

  65. Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun. 2017;8(1):1434. https://doi.org/10.1038/s41467-017-01484-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells. 2019;8(2). https://doi.org/10.3390/cells8020090.

  67. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11. https://doi.org/10.1126/scitranslmed.3003748.

  68. Winkler B, Funke D, Benmimoun B, Spéder P, Rey S, Logan Mary A et al. Brain inflammation triggers macrophage invasion across the blood-brain barrier in Drosophila during pupal stages. Science Advances. 7(44):eabh0050. https://doi.org/10.1126/sciadv.abh0050.

  69. Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol. 2006;80(6):1281–8. https://doi.org/10.1189/jlb.0506346.

    Article  CAS  PubMed  Google Scholar 

  70. Elks PM, van Eeden FJ, Dixon G, Wang X, Reyes-Aldasoro CC, Ingham PW, et al. Activation of hypoxia-inducible factor-1alpha (Hif-1alpha) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood. 2011;118(3):712–22. https://doi.org/10.1182/blood-2010-12-324186.

    Article  CAS  PubMed  Google Scholar 

  71. Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9. https://doi.org/10.1038/ni.2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393(10175):1021–32. https://doi.org/10.1016/S0140-6736(19)30195-3.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Engrand N, Mazighi M, Le Guerinel C, Dorison M, Dinkelacker V. Surgery for intracerebral haemorrhage. Lancet. 2019;394(10199):e20. https://doi.org/10.1016/S0140-6736(19)31625-3.

    Article  PubMed  Google Scholar 

  74. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408. https://doi.org/10.1016/S0140-6736(13)60986-1.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Siddique MS, Mendelow AD. Surgical treatment of intracerebral haemorrhage. Br Med Bull. 2000;56(2):444–56. https://doi.org/10.1258/0007142001903085.

    Article  CAS  PubMed  Google Scholar 

  76. Hanley DF, Lane K, McBee N, Ziai W, Tuhrim S, Lees KR, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet. 2017;389(10069):603–11. https://doi.org/10.1016/S0140-6736(16)32410-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

YH, RFK, and GX were supported by grants NS-096917, NS106746, NS112394, and NS116786 from the National Institutes of Health (NIH). KGH was supported by a research fellowship grant from Neurosurgery Research & Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guohua Xi or Ya Hua.

Ethics declarations

Ethics Approval

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

Fan Xia, Richard F. Keep, Fenghui Ye, Katherine G. Holste, Shu Wan, Guohua Xi, and Ya Hua declare that they have no conflict of interest. Guohua Xi is Deputy Editor-in-Chief of Translational Stroke Research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, F., Keep, R.F., Ye, F. et al. The Fate of Erythrocytes after Cerebral Hemorrhage. Transl. Stroke Res. 13, 655–664 (2022). https://doi.org/10.1007/s12975-021-00980-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00980-8

Keywords

Navigation