Skip to main content

Advertisement

Log in

Recurrent Transient Ischemic Attack Induces Neural Cytoskeleton Modification and Gliosis in an Experimental Model

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Transient ischemic attack (TIA) presents a high risk for subsequent stroke, Alzheimer’s disease (AD), and related dementia (ADRD). However, the neuropathophysiology of TIA has been rarely studied. By evaluating recurrent TIA-induced neuropathological changes, our study aimed to explore the potential mechanisms underlying the contribution of TIA to ADRD. In the current study, we established a recurrent TIA model by three times 10-min middle cerebral artery occlusion within a week in rat. Neither permanent neurological deficit nor apoptosis was observed following recurrent TIA. No increase of AD-related biomarkers was indicated after TIA, including increase of tau hyperphosphorylation and β-site APP cleaving enzyme 1 (BACE1). Neuronal cytoskeleton modification and neuroinflammation was found at 1, 3, and 7 days after recurrent TIA, evidenced by the reduction of microtubule-associated protein 2 (MAP2), elevation of neurofilament-light chain (NFL), and increase of glial fibrillary acidic protein (GFAP)-positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia at the TIA-affected cerebral cortex and basal ganglion. Similar NFL, GFAP and Iba1 alteration was found in the white matter of corpus callosum. In summary, the current study demonstrated that recurrent TIA may trigger neuronal cytoskeleton change, astrogliosis, and microgliosis without induction of cell death at the acute and subacute stage. Our study indicates that TIA-induced neuronal cytoskeleton modification and neuroinflammation may be involved in the vascular contribution to cognitive impairment and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

ADRD:

Alzheimer’s disease (AD) and related dementia

BACE1:

β-Site APP cleaving enzyme 1

BG:

Basal ganglia

CX:

Cortex

DWI:

Diffusion-weighted imaging

GFAP:

Glial fibrillary acidic protein

Iba1:

Ionized calcium binding adaptor molecule 1

ICA:

Internal carotid artery

MAP2:

Microtubule-associated protein 2

MBP:

Myelin basic protein

MCAO:

Middle cerebral artery occlusion

NFL:

Neurofilament-light chain

ROI:

Regions of interests

TIA:

Transient ischemic attack

T2WI:

T2-weighted imaging

References

  1. Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke. 2009;40(6):2276–93.

    Article  PubMed  Google Scholar 

  2. Walz ET, Brink T, Slivka A. Pattern and frequency of recurrent transient ischemic attacks. J Stroke Cerebrovasc Dis. 1997;6(3):121–4.

    Article  CAS  PubMed  Google Scholar 

  3. Khare S. Risk factors of transient ischemic attack: an overview. J Midlife Health. 2016;7(1):2–7.

    PubMed  PubMed Central  Google Scholar 

  4. Purroy F, Jimenez Caballero PE, Gorospe A, et al. Recurrent transient ischaemic attack and early risk of stroke: data from the PROMAPA study. J Neurol Neurosurg Psychiatry. 2013;84(6):596–603.

    Article  PubMed  Google Scholar 

  5. Zamboni G, Griffanti L, Jenkinson M, et al. White matter imaging correlates of early cognitive impairment detected by the montreal cognitive assessment after transient ischemic attack and minor stroke. Stroke. 2017;48(6):1539–47.

    Article  CAS  PubMed  Google Scholar 

  6. Kalaria RN, Akinyemi R, Ihara M. Does vascular pathology contribute to Alzheimer changes? J Neurol Sci. 2012;322(1–2):141–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–713.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goulay R, Mena Romo L, Hol EM, et al. From stroke to dementia: a comprehensive review exposing tight interactions between stroke and amyloid-beta formation. Transl Stroke Res. 2020;11(4):601–14.

    Article  PubMed  Google Scholar 

  9. Fazekas F, Fazekas G, Schmidt R, et al. Magnetic resonance imaging correlates of transient cerebral ischemic attacks. Stroke. 1996;27(4):607–11.

    Article  CAS  PubMed  Google Scholar 

  10. Bhadelia RA, Anderson M, Polak JF, et al. Prevalence and associations of MRI-demonstrated brain infarcts in elderly subjects with a history of transient ischemic attack. The Cardiovascular Health Study Stroke. 1999;30(2):383–8.

    CAS  PubMed  Google Scholar 

  11. Ferris JK, Edwards JD, Ma JA, et al. Changes to white matter microstructure in transient ischemic attack: a longitudinal diffusion tensor imaging study. Hum Brain Mapp. 2017;38(11):5795–803.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Simmatis LER, Scott SH, Jin AY. The impact of transient ischemic attack (TIA) on brain and behavior. Front Behav Neurosci. 2019;13:44.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ejaz S, Emmrich JV, Sawiak SJ, et al. Cortical selective neuronal loss, impaired behavior, and normal magnetic resonance imaging in a new rat model of true transient ischemic attacks. Stroke. 2015;46(4):1084–92.

    Article  PubMed  Google Scholar 

  14. Wang J, Li Y, Yu H, et al. Dl-3-N-Butylphthalide promotes angiogenesis in an optimized model of transient ischemic attack in C57BL/6 Mice. Front Pharmacol. 2021;12:751397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roy Choudhury G, Ryou MG, Poteet E, et al. Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Res. 2014;10(1551):45–58.

    Article  Google Scholar 

  16. Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation Stroke. 1995;26(4):627–34 (discussion 635).

    CAS  PubMed  Google Scholar 

  17. Schallert T, Fleming SM, Leasure JL, et al. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 2000;39(5):777–87.

    Article  CAS  PubMed  Google Scholar 

  18. Shi J, Yang SH, Stubley L, et al. Hypoperfusion induces overexpression of beta-amyloid precursor protein mRNA in a focal ischemic rodent model. Brain Res. 2000;853(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  19. Durukan Tolvanen A, Tatlisumak E, Pedrono E, et al. TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10min or shorter. Brain Res. 2017;15(1663):166–73.

    Article  Google Scholar 

  20. Wang J, Zhang P, Tang Z. Animal models of transient ischemic attack: a review. Acta Neurol Belg. 2020;120(2):267–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu F, McCullough LD. Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol. 2011;2011:464701.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bonnin P, Kubis N, Charriaut-Marlangue C. Collateral supply in preclinical cerebral stroke models. Transl Stroke Res. 2021 Nov 19.

  23. Wolf VL, Ergul A. Progress and challenges in preclinical stroke recovery research. Brain Circ. 2021;7(4):230–40.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fan C, Zhang L, He Z, et al. Reduced severity of outcome of recurrent ipsilateral transient cerebral ischemia compared with contralateral transient cerebral ischemia in rats. J Stroke Cerebrovasc Dis. 2017;26(12):2915–25.

    Article  PubMed  Google Scholar 

  25. Jakel L, De Kort AM, Klijn CJM, et al. Prevalence of cerebral amyloid angiopathy: a systematic review and meta-analysis. Alzheimers Dement. 2022;18(1):10–28.

    Article  CAS  PubMed  Google Scholar 

  26. Govindpani K, McNamara LG, Smith NR, et al. Vascular dysfunction in Alzheimer's disease: a prelude to the pathological process or a consequence of it? J Clin Med. 2019 May 10;8(5).

  27. Yang J, Wong A, Wang Z, et al. Risk factors for incident dementia after stroke and transient ischemic attack. Alzheimers Dement. 2015;11(1):16–23.

    Article  PubMed  Google Scholar 

  28. Corriveau RA, Bosetti F, Emr M, et al. The science of vascular contributions to cognitive impairment and dementia (VCID): a framework for advancing research priorities in the cerebrovascular biology of cognitive decline. Cell Mol Neurobiol. 2016;36(2):281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wen Y, Onyewuchi O, Yang S, et al. Increased beta-secretase activity and expression in rats following transient cerebral ischemia. Brain Res. 2004;1009(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  30. Wen Y, Yang S, Liu R, et al. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s disease-like tauopathy in female rats. J Biol Chem. 2004;279(21):22684–92.

    Article  CAS  PubMed  Google Scholar 

  31. Wen Y, Yang S, Liu R, et al. Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res. 2004;1022(1–2):30–8.

    Article  CAS  PubMed  Google Scholar 

  32. Tesco G, Koh YH, Kang EL, et al. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron. 2007;54(5):721–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dawson DA, Hallenbeck JM. Acute focal ischemia-induced alterations in MAP2 immunostaining: description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. J Cereb Blood Flow Metab. 1996;16(1):170–4.

    Article  CAS  PubMed  Google Scholar 

  34. Hartig W, Krueger M, Hofmann S, et al. Up-regulation of neurofilament light chains is associated with diminished immunoreactivities for MAP2 and tau after ischemic stroke in rodents and in a human case. J Chem Neuroanat. 2016;78:140–8.

    Article  PubMed  Google Scholar 

  35. Mages B, Fuhs T, Aleithe S, et al. The cytoskeletal elements MAP2 and NF-L show substantial alterations in different stroke models while elevated serum levels highlight especially MAP2 as a sensitive biomarker in stroke patients. Mol Neurobiol. 2021;58(8):4051–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zetterberg H. Neurofilament light: a dynamic cross-disease fluid biomarker for neurodegeneration. Neuron. 2016;91(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  37. Yanagihara T, Brengman JM, Mushynski WE. Differential vulnerability of microtubule components in cerebral ischemia. Acta Neuropathol. 1990;80(5):499–505.

    Article  CAS  PubMed  Google Scholar 

  38. Stassart RM, Mobius W, Nave KA, et al. The axon-myelin unit in development and degenerative disease. Front Neurosci. 2018;12:467.

    Article  PubMed  PubMed Central  Google Scholar 

  39. LoPresti P. Tau in oligodendrocytes takes neurons in sickness and in health. Int J Mol Sci. 2018 Aug 15;19(8)

  40. Seiberlich V, Bauer NG, Schwarz L, et al. Downregulation of the microtubule associated protein tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. Glia. 2015;63(9):1621–35.

    Article  PubMed  Google Scholar 

  41. Lyu J, Jiang X, Leak RK, et al. Microglial responses to brain injury and disease: functional diversity and new opportunities. Transl Stroke Res. 2021;12(3):474–95.

    Article  PubMed  Google Scholar 

  42. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts. Cell. 2019;179(2):292–311.

    Article  CAS  PubMed  Google Scholar 

  44. Askew K, Li K, Olmos-Alonso A, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017;18(2):391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tariq S, Tsang A, Wang M, et al. White matter tract microstructure and cognitive performance after transient ischemic attack. PLoS ONE. 2020;15(10):e0239116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nasrabady SE, Rizvi B, Goldman JE, et al. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun. 2018;6(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nagy M, Azeem MU, Soliman Y, et al. Pre-existing white matter hyperintensity lesion burden and diagnostic certainty of transient ischemic attack. J Stroke Cerebrovasc Dis. 2019;28(4):944–53.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alber J, Alladi S, Bae HJ, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement (N Y). 2019;5:107–17.

    Article  PubMed  Google Scholar 

  49. Munoz-Lasso DC, Roma-Mateo C, Pallardo FV, et al. Much more than a scaffold: cytoskeletal proteins in neurological disorders. Cells. 2020 Feb 4;9(2).

  50. Gaetani L, Blennow K, Calabresi P, et al. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90(8):870–81.

    Article  PubMed  Google Scholar 

  51. Xi G. Clinical translation of cerebral preconditioning. Transl Stroke Res. 2010;1(1):2–3.

    Article  PubMed  Google Scholar 

  52. Colas-Campas L, Farre J, Mauri-Capdevila G, et al. Inflammatory response of ischemic tolerance in circulating plasma: preconditioning-induced by transient ischemic attack (TIA) phenomena in acute ischemia patients (AIS). Front Neurol. 2020;11:552470.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Johnston SC. Ischemic preconditioning from transient ischemic attacks? Data from the Northern California TIA Study. Stroke. 2004;35(11 Suppl 1):2680–2.

    Article  PubMed  Google Scholar 

  54. Ghozy S, Kacimi SEO, Elfil M, et al. Transient ischemic attacks preceding ischemic stroke and the possible preconditioning of the human brain: a systematic review and meta-analysis. Front Neurol. 2021;12:755167.

    Article  PubMed  PubMed Central  Google Scholar 

  55. McDonough A, Weinstein JR. The role of microglia in ischemic preconditioning. Glia. 2020;68(3):455–71.

    Article  PubMed  Google Scholar 

  56. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was in part supported by National Institutes of Health grant NS109583 (SY) and a grant (#RP210046) from the Cancer Prevention and Research Institute of Texas (RB).

Author information

Authors and Affiliations

Authors

Contributions

LW, RL, and SY conceived and designed the experiments; LW, AW, KC, YS, and RB performed the experiments. LW analyzed the data. LW, CT, RL, and SY wrote and edited the manuscript; all the authors reviewed the manuscript before submission.

Corresponding authors

Correspondence to Shao-Hua Yang or Ran Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 991 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chaudhari, K., Winters, A. et al. Recurrent Transient Ischemic Attack Induces Neural Cytoskeleton Modification and Gliosis in an Experimental Model. Transl. Stroke Res. 14, 740–751 (2023). https://doi.org/10.1007/s12975-022-01068-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01068-7

Keywords

Navigation