Skip to main content

Advertisement

Log in

Oxidative damage induced by chromium (VI) in rat erythrocytes: protective effect of selenium

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Excess chromium (Cr) exposure is associated with various pathological conditions including hematological dysfunction. The generation of oxidative stress is one of the plausible mechanisms behind Cr-induced cellular deteriorations. The efficacy of selenium (Se) to combat Cr-induced oxidative damage in the erythrocytes of adult rats was investigated in the current study. Female Wistar rats were randomly divided into four groups of six each: group I served as controls which received standard diet, group II received in drinking water K2Cr2O7 alone (700 ppm), group III received both K2Cr2O7 and Se (0.5 Na2SeO3 mg/kg of diet), and group IV received Se (0.5 mg/kg of diet) for 3 weeks. Rats exposed to K2Cr2O7 showed an increase of malondialdehyde and protein carbonyl levels and a decrease of sulfhydryl content, glutathione, non-protein thiol, and vitamin C levels. A decrease of enzyme activities like catalase, glutathione peroxidase, and superoxide dismutase activities was also noted. Co-administration of Se with K2Cr2O7 restored the parameters cited above to near-normal values. Therefore, our investigation revealed that Se was a useful element preventing K2Cr2O7-induced erythrocyte damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adham KG, Hashem HO, Abu-Shabana MB, Kamel AH (2000) Vitamin C deficiency in the catfish Clarias gariepinus. Aquac Nutr 6:129–139

    Article  CAS  Google Scholar 

  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  3. Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for polychlorinated biphenyls (PCBs). ATSDR, Atlanta

    Google Scholar 

  4. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 302:141–145

    Article  PubMed  CAS  Google Scholar 

  5. Alves de Andrade JI, Ono EA, de Menezes GC, Brasil EM, Roubach R, Urbinati EC, Tavares-Dias M, Marcon JL, Affonso EG (2007) Influence of diets supplemented with vitamins C and E on pirarucu (Arapaima gigas) blood parameters. Comp Biochem Physiol, Part A 146:576–580

    Article  Google Scholar 

  6. Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  7. Barceloux DG (1999) Chromium. J Toxicol Clin Toxicol 37:173–194

    Article  PubMed  CAS  Google Scholar 

  8. Batcioglu K, Ozturk IC, Karagözler AA, Karatas F (2002) Comparison of selenium level with GSH-Px activity in the liver of mice treated 7,12-DMBA. Cell Biochem Funct 20:115–118

    Article  PubMed  CAS  Google Scholar 

  9. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  10. Ben Amara I, Fetoui H, Guermazi F, Zeghal N (2009) Dietary selenium addition improves cerebrum and cerebellum impairments induced by methimazole in suckling rats. Int J Dev Neurosci 27:719–726

    Article  PubMed  CAS  Google Scholar 

  11. Ben Amara I, Hakim A, Troudi A, Soudani N, Ayadi Makni F, Zeghal KM, Zeghal N (2010) Protective effects of selenium on methimazole-induced anemia and oxidative stress in adult rats and their offspring. Hum Exp Toxicol. doi:10.1177/0960327110392403

  12. Borthiry GR, Antholine WE, Kalyanaraman B, Myers JM, Myers CR (2007) Reduction of hexavalent chromium by human cytochrome b5: generation of hydroxyl radical and superoxide. Free Radic Biol Med 42:738–755

    Article  PubMed  CAS  Google Scholar 

  13. Borthiry GR, Antholine WE, Myers JM, Myers CR (2008) Reductive activation of hexavalent chromium by human lung epithelial cells: generation of Cr(V) and Cr(V)–thiol species. J Inorg Biochem 102:1449–1462

    Article  PubMed  CAS  Google Scholar 

  14. Brivida K, Sies H (1994) Nonenzymatic antioxidant defense systems. In: Frie B (ed) Natural antioxidants in human health and diseases. Academic, San Diego, pp 119–121

    Google Scholar 

  15. Chikezie PC, Uwakwe AA, Monago CC (2009) Studies of human HbAA erythrocytes osmotic fragility index of non malarious blood in the presence of five antimalarial drugs. J Cell and Animal Biol 3:39–43

    CAS  Google Scholar 

  16. Costa HM, Rodrigues RC, Mattos Mda G, Ribeiro RF (2003) Evaluation of the adaptation interface of one-piece implant-supported superstructures obtained in Ni-Cr-Ti and Pd-Ag alloys. Braz Dent J 14:197–202

    Article  PubMed  Google Scholar 

  17. Council of European Communities (1986) Council instructions about the protection of living animals used in scientific investigations. Off J Eur Commun (JO 86/609/CEE) L 358:1–18

    Google Scholar 

  18. D'Almeida V, Hipólide DC, da Silva-Fernandes ME (1995) Lack of sex and estrous cycle effects on the activity of three antioxidant enzymes in rats. Physiol Behav 57(2):385–387

    Article  PubMed  Google Scholar 

  19. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta: Inter J Clin Chem 329:23–38

    Article  CAS  Google Scholar 

  20. De Vizcaya-Ruiz A, Rivero-Muller A, Ruiz-Ramirez L, Howarth JA, Dobrota M (2003) Hematotoxicity response in rats by the novel copper-based anticancer agent: casiopeina II. Toxicology 194:103–113

    Article  PubMed  Google Scholar 

  21. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Method Enzymol 86:421–431

    Article  Google Scholar 

  22. El-Bayoumy K (2001) The protective role of selenium on genetic damage and on cancer. Mutat Res 475:123–139

    Article  PubMed  CAS  Google Scholar 

  23. El-Demerdash FM (2001) Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J Environ Sci Health B 36:489–499

    Article  PubMed  CAS  Google Scholar 

  24. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Cadmium-induced changes in lipid peroxidation, blood haematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and β-carotene. Food Chem Toxicol 42:1563–1571

    Article  PubMed  CAS  Google Scholar 

  25. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  26. Ellman GL, Courtney KD, Andres V Jr, Feather-stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  27. El-Sharaky AS, Newairy AA, Badreldeen MM, Eweda SM, Sheweita SA (2007) Protective role of selenium against renal toxicity induced by cadmium in rats. Toxicology 235:185–193

    Article  PubMed  CAS  Google Scholar 

  28. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121

    Article  CAS  Google Scholar 

  29. Gan L, Liu Q, Xu HB, Zhu YS, Yang XL (2002) Effects of selenium overexposure on glutathione peroxidase and thioredoxin reductase gene expressions and activities. Biol Trace Elem Res 89:165–175

    Article  PubMed  CAS  Google Scholar 

  30. Gul O, Selda K, Yusuf O, Gulcin A, Mujdat U (2001) Lipid and protein oxidation in erythrocytes membranes of hypercholesterolemic subjects. Clin Biochem 34:335–339

    Article  Google Scholar 

  31. Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    PubMed  CAS  Google Scholar 

  32. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  PubMed  CAS  Google Scholar 

  33. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(Suppl):715S–725S

    PubMed  CAS  Google Scholar 

  34. Harrison PR, Lanfear J, Wu L, Fleming J, McGarry L, Blower L (1997) Chemopreventive and growth inhibitory effects of selenium. Biomed Environ Sci 10:235–245

    PubMed  CAS  Google Scholar 

  35. Harvey JW (1996) Congenital erythrocyte enzyme deficiencies. Vet Clin North Am Small Anim Pract 26:1003–1011

    PubMed  CAS  Google Scholar 

  36. Hitoshi M, Hiroshi H (2005) Structure-dependent and receptor-independent increase in osmotic fragility of rat erythrocytes by short-chain fatty acids. Biochim Biophys Acta 1713:113–117

    Article  Google Scholar 

  37. Hotz CS, Fitzpatrick DW, Trick KD, L’Abbé MR (1997) Dietary iodine and selenium interact to affect thyroid hormone metabolism of rats. J Nutr 127:1214–1218

    PubMed  CAS  Google Scholar 

  38. Huang YL, Chen C, Sheu JY, Chuang IC, Pan JH, Lin TH (1999) Lipid peroxidation in workers exposed to hexavalent chromium. J Toxicol Environ Health A 56:235–247

    Article  PubMed  CAS  Google Scholar 

  39. IARC (1990) Monograph on the evaluation of carcinogenic risk to humans, chromium, nickel and welding. IARC, Lyon

    Google Scholar 

  40. Irshad M, Chaudhuri BS (2002) Oxidant–antioxidant system: role and significance in human body. Indian J Exp Bio 40:1233–1239

    CAS  Google Scholar 

  41. Jacques-Silva MC, Nogueira CW, Broch LC, Flores EMM, Rocha JBT (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharm Toxicol 88:119–125

    Article  CAS  Google Scholar 

  42. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  PubMed  CAS  Google Scholar 

  43. Junaid M, Murthy RC, Saxena DK (1996) Embryo-toxicity of orally administered chromium in mice: exposure during the period of organogenesis. Toxicol Lett 84:143–148

    Article  PubMed  CAS  Google Scholar 

  44. Kanojia RK, Junaid M, Murthy RC (1996) Chromium induced teratogenicity in female rat. Toxicol Lett 89:207–214

    Article  PubMed  CAS  Google Scholar 

  45. Kanojia RK, Junaid M, Murthy RC (1998) Embryo and fetotoxicity of hexavalent chromium: a long-term study. Toxicol Lett 95:165–172

    Article  PubMed  CAS  Google Scholar 

  46. Kuhn DM, Aretha CW, Geddes TJ (1999) Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci 19:10289–10294

    PubMed  CAS  Google Scholar 

  47. Kumar A, Barthwal R (1991) Hexavalent chromium effects on hematological indices in rats. Bull Environ Contam Toxicol 46:761–768

    Article  PubMed  CAS  Google Scholar 

  48. Lajos N, Miki N, Sandor S (2007) Protein and non-protein sulfhydryls and disulfides in gastric mucosa and liver after gastrotoxic chemicals and sucralfate: possible new targets of pharmacologic agents. World J Gastroenterol 13:2053–2060

    Google Scholar 

  49. Leonard S, Wang S, Zang L, Castranova V, Vallyathan V, Shi X (2000) Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis. J Environ Pathol Toxicol Oncol 19:49–60

    PubMed  CAS  Google Scholar 

  50. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  51. Lukanova A, Toniolo P, Zhitkovich A, Nikolova V, Panev T, Popov T (1996) Occupational exposure to Cr(VI): comparison between chromium levels in lymphocytes, erythrocytes, and urine. Int Arch Occup Environ Health 69:39–44

    Article  PubMed  CAS  Google Scholar 

  52. Luo H, Lu Y, Shi X, Mao Y, Dalal NS (1996) Chromium(IV)-mediated Fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Ann Clin Lab Sci 26:185–191

    PubMed  CAS  Google Scholar 

  53. Maeng SH, Chung HW, Kim KJ, Lee BM, Shin YC, Kim SJ, Yu IJ (2004) Chromosome aberration and lipid peroxidation in chromium exposed workers. Biomarkers 9:418–434

    Article  PubMed  CAS  Google Scholar 

  54. Malik JK, Summer KM (1982) Toxicity and metabolism of malathion and its impurities in isolated rat hepatocytes: role of glutathione. Toxicol Appl Pharmacol 66:69–76

    Article  PubMed  CAS  Google Scholar 

  55. May JM, Qu ZC, Mendiratta S (1998) Protection and recycling of alfatocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289

    Article  PubMed  CAS  Google Scholar 

  56. Messaoudi I, Hammouda F, El Heni J, Baati T, Saïd K, Kerkeni A (2010) Reversal of cadmium-induced oxidative stress in rat erythrocytes by selenium, zinc or their combination. Exp Toxicol Pathol 62:281–288

    Article  PubMed  CAS  Google Scholar 

  57. Messarah M, Klibet F, Boumendjel A, Abdennour C, Bouzerna N, Boulakoud MS, El Feki A (2010) Hepatoprotective role and antioxidant capacity of selenium on arsenic-induced liver injury in rats. Exp Toxicol Pathol. doi:10.1016/j.etp.2010.08.002

  58. National Toxicology Program (NTP) (2005) 11th report on carcinogens. Rep Carcinog 11:1–32

    Google Scholar 

  59. Newairy AA, El-Sharaky AS, Badreldeen MM, Eweda SM, Sheweita SA (2007) The hepatoprotective effects of selenium against cadmium toxicity in rats. Toxicology 242:23–30

    Article  PubMed  CAS  Google Scholar 

  60. Ognjanovic BI, Markovic SD, Pavlovic SZ, Zikic RV, Stajn AS, Saicic S (2008) Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res 57:403–411

    PubMed  CAS  Google Scholar 

  61. Okwusidi JI (2004) Long term storage stabilizes human erythrocytes membrane in Nigerian black males. African J Biomed Res 7:9–12

    Google Scholar 

  62. Rayman M (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    Article  PubMed  CAS  Google Scholar 

  63. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  64. Sato Y, Kanazawa S, Sato K, Suzuki Y (1998) Mechanism of free radical induced hemolysis of human erythrocytes: II. Hemolysis by lipid soluble radical initiator. Biol Pharm Bull 21:250–256

    Article  PubMed  CAS  Google Scholar 

  65. Semba RD, Ferrucci L, Cappola AR, Ricks MO (2006) Low serum selenium is associated with anemia among older women living in the community: the Women's Health and Aging Studies I and II. Biol Trace Elem Res 112:97–107

    Article  PubMed  CAS  Google Scholar 

  66. Shi X, Dalal NS (1990) NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS Lett 276:189–191

    Article  PubMed  CAS  Google Scholar 

  67. Shi X, Chiu A, Chen CT, Halliwell B, Castranova V, Vallyathan V (1999) Reduction of chromium(VI) and its relationship to carcinogenesis. J Toxicol Environ Health B 2:87–104

    Article  CAS  Google Scholar 

  68. Sinha M, Manna P, Sil PC (2007) A 43 kD protein from the herb, Cajanus indicus L., protects against fluoride induced oxidative stress in mice erythrocytes. Pathophysiology 14:47–54

    Article  PubMed  CAS  Google Scholar 

  69. Smith A, Temple K (1997) Selenium metabolism and renal disease. J Ren Nutr 7:69–72

    Article  Google Scholar 

  70. Soudani N, Sefi M, BenAmara I, Boudawara T, Zeghal N (2010) Protective effects of selenium (Se) on chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Safety 4:671–678

    Article  Google Scholar 

  71. Soudani N, Troudi A, Bouaziz H, Ben Amara I, Boudawara T, Zeghal N (2011) Cardioprotective effects of selenium on chromium (VI)-induced toxicity in female rats. Ecotoxicol Environ Saf 74:513–520

    Article  PubMed  CAS  Google Scholar 

  72. Srivastava PA, Narain AS (1985) Catfish blood chemistry under environmental stress. Experimentia 4:855–857

    Google Scholar 

  73. Stadtman TC (1990) Selenium biochemistry. Ann Rev Biochem 59:111–127

    Article  PubMed  CAS  Google Scholar 

  74. Standeven AM, Wetterhahn KE (1991) Is there a role for reactive oxygen species in the mechanism of chromium(VI) carcinogenesis? Chem Res Toxicol 4:616–625

    Article  PubMed  CAS  Google Scholar 

  75. Standeven AM, Wetterhahn KE (1992) Ascorbate is the principal reductant of chromium(VI) in rat lung ultrafiltrates and cytosols, and mediates chromium–DNA binding in vitro. Carcinogenesis 13:1319–1324

    Article  PubMed  CAS  Google Scholar 

  76. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485

    Article  PubMed  CAS  Google Scholar 

  77. Stohs JS, Bagchi D, Hassoun E, Bagchi M (2001) Oxidative mechanism in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 20:77–88

    PubMed  CAS  Google Scholar 

  78. Sugden KD, Campo CK, Martin BD (2001) Direct oxidation of guanine and 7,8-dihydro-8-oxoguanine in DNA by a high-valent chromium complex: a possible mechanism for chromate genotoxicity. Chem Res Toxicol 14:1315–1322

    Article  PubMed  CAS  Google Scholar 

  79. Thirunavukkarasu C, Sakthisekaran D (2003) Sodium selenite, dietary micronutrient, prevents the lymphocyte DNA damage induced by N-nitrosodiethylamine and phenobarbital promoted experimental hepatocarcinogenesis. J Cell Biochem 15(88):578–588

    Article  Google Scholar 

  80. Tsuchiya M, Asada A, Kasahara E, Sato EF, Shindo M, Inoue M (2002) Antioxidant protection of propofol and its recycling in erythrocyte membranes. Am J Respir Crit Care Med 65:54–60

    Google Scholar 

  81. US Department of Labor, Occupational Safety & Health Administration (2006) Contract No. J-9-F-0030

  82. Van Nhien N, Yabutani T, Cong Khan N, Khanh LNB (2009) Association of low serum selenium with anemia among adolescent girls living in rural Vietnam. Nutrition 25:6–10

    Article  PubMed  Google Scholar 

  83. Wiegand HJ, Ottenwalder H, Bolt HM (1988) Recent advances in biological monitoring of hexavalent chromium compounds. Sci Total Environ 71:309–315

    Article  PubMed  CAS  Google Scholar 

  84. Yamanaka K, Hasegawa A, Sawamura R, Okada S (1991) Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol 108:205–213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DGRST grants (Appui à la Recherche Universitaire de Base ARUB 99/UR/08-73), Tunisia. The authors are indebted to Mr. Bejaoui Hafedh, teacher of English at Sfax Faculty of Science, who has proofread and edited this paper.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najiba Zeghal.

Additional information

Ibtissem Ben Amara and Afef Troudi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soudani, N., Ben Amara, I., Troudi, A. et al. Oxidative damage induced by chromium (VI) in rat erythrocytes: protective effect of selenium. J Physiol Biochem 67, 577–588 (2011). https://doi.org/10.1007/s13105-011-0104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0104-4

Keywords

Navigation