Skip to main content
Log in

Effect of Rebaudioside A, a diterpenoid on glucose homeostasis in STZ-induced diabetic rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Rebaudioside A (Reb A), a major constituent of Stevia rebaudiana, was recently proposed as an insulinotropic agent. The aim of this investigation was to evaluate the antihyperglycemic effect of Reb A on the activities of hepatic enzymes of carbohydrate metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in adult male Albino Wistar rats, weighing 180–200 g, by a single intraperitoneal injection at a dose of STZ (40 mg/kg body weight). Diabetic rats showed significant (P < 0.05) increase in the levels of plasma glucose and glycosylated hemoglobin and significant (P < 0.05) decrease in the levels of plasma insulin and hemoglobin. Activities of gluconeogenic enzymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase were significantly (P < 0.05) increased while hexokinase and glucose-6-phosphate dehydrogenase were significantly (P < 0.05) decreased in the liver along with glycogen. Oral treatment with Reb A to diabetic rats significantly (P < 0.05) decreased blood glucose and reversed these hepatic carbohydrate metabolizing enzymes in a significant manner. Histopathology changes of pancreas confirmed the protective effects of Reb A in diabetic rats. Thus, the results show that Reb A possesses an antihyperglycemic activity and provide evidence for its traditional usage in the control of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

DNA:

Deoxyribonucleic acid

GLUT-2:

Glucose transporter-2

Hb:

Hemoglobin

HbA1c:

Glycosylated hemoglobin

NAD:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

Reb A:

Rebaudioside A

STZ:

Streptozotocin

References

  1. Abdel-Rahi S, EI-Saadany S, Abo-Eytta AM, Wasif MM (1992) The effect of sammo administration on some fundamental enzymes of pentose phosphate pathway and energy metabolites of alloxanised rats. Nahrung 36:8–14

    Article  Google Scholar 

  2. Abudula R, Matchkov VV, Jeppesen PB, Nilsson H, Aalkjaer C, Hermansen K (2008) Rebaudioside A directly stimulates insulin secretion from pancreatic beta cells: a glucose dependent action via inhibition of ATP-sensitive K+ channals. Diabetes Obes Metab 11:74–85

    Google Scholar 

  3. Adisakwattana S, Roengsamran S, Hsu WH, Yibchok-Anun S (2005) Mechanisms of antihyperglycemic effect of p-methoxycinnamic acid in normal and STZ-induced diabetic rats. Life Sci 78:406–412

    Article  PubMed  CAS  Google Scholar 

  4. American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33:S62–S69

    Article  Google Scholar 

  5. Andrikopoulos S, Rosella G, Gaskin A, Thorburn A, Kaczmarczyk S, Zajac JD, Proietto J (1993) Impaired regulation of hepatic fructose-1,6-bisphosphatase in the New Zealand obese mouse model of NIDDM. Diabetes 42:1731–1736

    Article  PubMed  CAS  Google Scholar 

  6. Aybar MJ, Sanchez Riera AN, Grau A, Sanchez SS (2001) Hypoglycemic effect of the water extract of Smallantus sonchifolius (yacon) leaves in normal and diabetic rats. J Ethnopharmacol 74:125–132

    Article  PubMed  CAS  Google Scholar 

  7. Bailey CJ (2000) Potential new treatments for type 2 diabetes. Trends Pharmacol Sci 2:259–265

    Article  Google Scholar 

  8. Balamurugan R, Duraipandiyan V, Ignacimuthu S (2011) Antidiabetic activity of γ-sitosterol isolated from lippianodiflora L, in streptozotocin induced diabetic rats. Eur J Pharmacol 667:410–418

    Article  PubMed  CAS  Google Scholar 

  9. Bisse E, Abragam EC (1985) New less temperature sensitive, microchromato graphic method for the separation and quantitation of glycosylated haemoglobin using a non cyanide buffer system. J Chromatogr 344:81–91

    Article  PubMed  CAS  Google Scholar 

  10. Bollen M, Keppens S, Stalmans W (1998) Specific features of glycogen metabolism in the liver. Biochem J 336:19–31

    PubMed  CAS  Google Scholar 

  11. Bolzan AD, Bianchi MS (2003) Genotoxicity of streptozotocin. Mutat Res 512:121–134

    Google Scholar 

  12. Brandstrup N, Kirk JE, Bruni C (1957) Determination of hexokinase in tissues. J Gerontol 12:166–171

    PubMed  CAS  Google Scholar 

  13. Chan P, Xu DY, Liu JC, Chan YJ, Tomlinson B, Huang WP, Cheng JT (1998) The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci 63:1679–1684

    Article  PubMed  CAS  Google Scholar 

  14. Chen R, Meseck M, McEvoy RC, Woo SLC (2000) Glucose-stimulated and self-limiting insulin production by glucose 6-phosphatase promoter driven insulin expression in hepatoma cells. Gene Ther 7:1802–1809

    Article  PubMed  CAS  Google Scholar 

  15. Chou JY, Matern D, Mansfield BC, Chen YT (2002) Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med 2:121–143

    Article  PubMed  CAS  Google Scholar 

  16. Cussimanio BL, Booth AA, Todd P, Hudson BG, Khali-fah RG (2003) Unusual susceptibility of heme proteins to damage by glucose during non-enzymatic glycation. Biophys Chem 105:743–755

    Article  PubMed  CAS  Google Scholar 

  17. Ellis HA, Kirkman HN (1961) A colorimetric method for assay of erythrocyte glucose-6-phosphate dehydrogenase. Proc Soc Exp Biol Med 106:607–609

    Google Scholar 

  18. Fiske CH, Subbarow J (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  19. Gabbay KH (1976) Glycosylated haemoglobin and diabetic control. N Engl J Med 295:443–444

    Article  PubMed  CAS  Google Scholar 

  20. Gancedo JM, Gancedo C (1971) Fructose-1, 6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol 76:132–138

    CAS  Google Scholar 

  21. Gardana C, Simonetti P, Canzi E, Zanchi R, Pietta P (2003) Metabolism of stevioside and rebaudioside A from Stevia rebaudiana extracts by human microflora. J Agric Food Chem 5:6618–6622

    Article  Google Scholar 

  22. Gayathri M, Kannabiran K (2008) Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats. Int J Clin Biochem 23:394–400

    Article  Google Scholar 

  23. Geuns JMC (2004) Review: safety of stevioside used as a sweetener. In: Geuns JMC, Buyse J (eds) Proceedings of the first symposium safety of stevioside. Euprint Ed, Leuven, pp 85–127

    Google Scholar 

  24. Ghosh R, Mukherjee B, Chatterjee MA (1994) Effect of selenium on streptozotocin-induced diabetic mice. Diabetes Res 25:165–171

    PubMed  CAS  Google Scholar 

  25. Gomes A, Vedasiromoni JR, Das M, Sharma RM, Ganguly DK (1995) Antihyperglycemic effect of black tea (Camellia sinensis) in rat. J Ethnopharmacol 45:223–226

    Article  PubMed  CAS  Google Scholar 

  26. Grover JK, Vats V, Rathi SS (2000) Antihyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on keymetabolic enzymes involved in carbohydrate metabolism. J Ethnopharmacol 73:461–470

    Article  PubMed  CAS  Google Scholar 

  27. Gupta BL, Nehal M, Baquer NZ (1997) Effect of experimental diabetes on the activities of hexokinase, glucose-6-phosphate dehydrogenase and catecholamines in rat erythrocytes of different ages. Indian J Exp Biol 35:792–795

    PubMed  CAS  Google Scholar 

  28. Hii CST, Howell SL (1985) Effect of flavonodis in insulin secretion and Ca2+ handling in rats islets of Langerhans. J Endocrinol 107:1–8

    Article  PubMed  CAS  Google Scholar 

  29. IDF (2009) Diabetes Atlas 4th Edition, International Diabetes Federation. President of International Diabetes Federation calls for concerted action to stop diabetes epidemic. Montreal Canada

  30. IDF (2011) Diabetes Atlas News, 5th Edition of the Diabetes Atlas released on World Diabetes Day

  31. JECFA (2005) Steviol glycosides. In: 63rd Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, Switzerland. World Health Organization (WHO), Geneva, Switzerland, WHO Technical Report Series 928:34–39

  32. Kasetti RB, Rajasekhar MD, Konteti VK, Fatima SS, Kumar EGT, Swapa S, Ramesh B, Rao CA (2010) Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food Chem Toxicol 48:1078–1084

    Article  PubMed  CAS  Google Scholar 

  33. Koide H, Oda T (1959) Pathological occurrence of glucose-6-phosphatase in liver disease. Clin Chim Acta 74:554–561

    Google Scholar 

  34. Kondeti VK, Badri KR, Maddirala DR, Mekala Thur SK, Fatima SS, Kasetti RB, Rao CA (2010) Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol 48:1281–1287

    Article  PubMed  CAS  Google Scholar 

  35. Lowry OH, Rosenbrough NJ, Farr AI, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265

    PubMed  CAS  Google Scholar 

  36. Lyons TJ, Silvestri G, Dunn JA, Dyer DG, Baynes JW (1991) Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes 40:1010–1015

    Article  PubMed  CAS  Google Scholar 

  37. Mandarino LJ, Wrihgt KS, Verit LS, Nicolus J, Bell JM, Kolterman OG, Beck-Nielson H (1987) Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, osphofructo kinase, and glycogen synthase. Evidence for their role in oxidative and nonoxidative glucose metabolism. J Clin Invest 80:655–663

    Article  PubMed  CAS  Google Scholar 

  38. Masiello P, Broca C, Gross M, Roye R, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229

    Article  PubMed  CAS  Google Scholar 

  39. Melis MS (1992) Stevioside effect on renal function of normal and hypertensive rats. J Ethnopharmcol 6:213–217

    Article  Google Scholar 

  40. Mohana Priya E, Gothandam KM, Karthikeyan S (2012) antidiabetic activity of Feronia limonia and Artocarpus heterophllus in streptozotocin induced diabetic rats. Am J Food Tech 7:43–49

    Article  Google Scholar 

  41. Morales MA, Jabbay AJ, Tenenzi HP (1975) Mutation affecting accumulation of glycogen. Neurospora News 20:24–25

    Google Scholar 

  42. Murray RK, Granner DK, Mayes PA, Rodwell VW (2000) Harper’s biochemistry (25th Ed). Appleton & Lange, Stanford, pp 610–617

    Google Scholar 

  43. Nordlie RC, Foster JD, Lange AJ (1999) Regulation of glucose production by the liver. Annu Rev Nutr 19:379–406

    Article  PubMed  CAS  Google Scholar 

  44. Pari L, Saravanan R (2007) Beneficial effect of succinic acid monoethyl ester on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-nicotinamide induced type 2 diabetes. Chem Biol Interact 169:15–24

    Article  PubMed  CAS  Google Scholar 

  45. Pepato MT, Migliorini RH, Goldberg AL, Kettelhut IC (1996) Role of different proteolytic pathways in degradation of muscle protein from streptozotocin-diabetic rats. Am J Physiol 271:E340–E347

    PubMed  CAS  Google Scholar 

  46. Rajasekaran S, Kasiappan R, Karuran S, Subramanian S (2006) Benificial effects of Aleo vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin Exp Pharmacol 33:232–237

    Article  CAS  Google Scholar 

  47. Roden M, Bernroider E (2003) Hepatic glucose metabolism in humans—its role in health and disease. Best Pract Res Clin Endocrinol Metab 17:365–383

    Article  PubMed  CAS  Google Scholar 

  48. Senthil kumar GP, Arulselvan P, Sathiskumar D, Subramanian S (2006) Antidiabetic activity of fruits of Terminalia chebula on streptozotocin induced diabetes in rats. J Health Sci 52:283–291

    Article  Google Scholar 

  49. Shimazu T (1987) Neuronal regulation of hepatic glucose metabolism in mammals. Diabtes Metabol Rev 3:185–206

    Article  CAS  Google Scholar 

  50. Soejarto DD, Kinghorn AD, Farnsworth NR (1982) Potential sweetening agents of plant origin. III. Organoleptic evaluation of stevia leaf herbarium samples for sweetness. J Nat Prod 45:590–599

    Article  PubMed  CAS  Google Scholar 

  51. Stalmans W, Cadefau J, Wera S, Bollen M (1997) New insight into the liver glycogen metabolism by glucose. Biochem Soc Trans 25:19–25

    PubMed  CAS  Google Scholar 

  52. Tahrani AA, Piya MK, Kennedy A, Barnett AH (2010) Glycaemic control in type 2 diabetes: targets and new therapies. Pharmacol Ther 125:328–361

    Article  PubMed  CAS  Google Scholar 

  53. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24

    CAS  Google Scholar 

  54. Ugochukwu NH, Babady NE (2002) Antidiabetic effects of Gongronema latifolium in hepatocyte of rat models of non-insulin dependent diabetes mellitus. Fitoterapia 73:612–618

    Article  PubMed  CAS  Google Scholar 

  55. Wagle A, Jivraj GL, Garlock SR (1998) Stapleton, Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase. J Biol Chem 273:14968–14974

    Article  PubMed  CAS  Google Scholar 

  56. Wiernsperger NF, Bailey CJ (1999) The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs 58:31–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Saravanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, R., Vengatash babu, K. & Ramachandran, V. Effect of Rebaudioside A, a diterpenoid on glucose homeostasis in STZ-induced diabetic rats. J Physiol Biochem 68, 421–431 (2012). https://doi.org/10.1007/s13105-012-0156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0156-0

Keywords

Navigation