Skip to main content

Advertisement

Log in

Melatonin induces reactive oxygen species generation and changes in glutathione levels and reduces viability in human pancreatic stellate cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In this study, the effects of pharmacological concentrations of melatonin (1 μM–1 mM) on human pancreatic stellate cells (HPSCs) have been examined. Cell type–specific markers and expression of melatonin receptors were analyzed by western blot analysis. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2–loaded cells. Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by fluorescence techniques. Production of reactive oxygen species (ROS) was monitored following 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate acetyl ester and MitoSOX™ Red–derived fluorescence. Cell viability was studied using the AlamarBlue® test. Cultured cells expressed markers typical of stellate cells. However, cell membrane receptors for melatonin could not be detected. Thapsigargin, bradykinin, or melatonin induced changes in intracellular free Ca2+ concentration. In the presence of the indole, a decrease in the GSH/GSSG ratio was observed that depended on the concentration of melatonin used. Furthermore, the indole evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Finally, melatonin decreased HPSC viability in a time and concentration-dependent manner. We conclude that melatonin, at pharmacological concentrations, induces changes in the oxidative state of HPSC. This might regulate cellular viability and could not involve specific plasma membrane receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

[Ca2+]c :

Intracellular free Ca2+ concentration

CM-H2DCFDA:

5-(and-6)-Chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester

ER:

Endoplasmic reticulum

Fura-2-AM:

Fura-2-acetoxymethyl ester

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HBSS:

Hank’s balanced salts

HPSCs:

Human pancreatic stellate cells

H2O2 :

Hydrogen peroxide

ROS:

Reactive oxygen species

RPSCs:

Rat pancreatic stellate cells

SERCA:

Sarcoendoplasmic reticulum Ca2+-ATPase

Tps:

Thapsigargin

α-sma:

Alpha-smooth muscle actin

References

  1. Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025. https://doi.org/10.1007/s00018-014-1579-2

    Article  CAS  PubMed  Google Scholar 

  2. Angelova PR, Abramov AY (2018) Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett 592:692–702. https://doi.org/10.1002/1873-3468.12964

    Article  CAS  PubMed  Google Scholar 

  3. Apte M (2011) Isolation of quiescent pancreatic stellate cells from rat and human pancreas. Pancreapedia: Exocrine Pancreas Knowledge Base 10:434–443. https://doi.org/10.3998/panc.2011.10

    Article  Google Scholar 

  4. Bonnefont-Rousselot D, Collin F (2010) Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 278:55–67. https://doi.org/10.1016/j.tox.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  5. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  6. Chetboun M, Abitbol G, Rozenberg K, Rozenfeld H, Deutsch A, Sampson SR, Rosenzweig T (2012) Maintenance of redox state and pancreatic beta-cell function: role of leptin and adiponectin. J Cell Biochem 113:1966–1976. https://doi.org/10.1002/jcb.24065

    Article  CAS  PubMed  Google Scholar 

  7. Chovancova B, Hudecova S, Lencesova L, Babula P, Rezuchova I, Penesova A, Grman M, Moravcik R, Zeman M, Krizanova O (2017) Melatonin-induced changes in cytosolic calcium might be responsible for apoptosis induction in tumour cells. Cell Physiol Biochem 44:763–777. https://doi.org/10.1159/000485290

    Article  PubMed  Google Scholar 

  8. Del Castillo-Vaquero A, Salido GM, González A (2010) Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 49:256–263. https://doi.org/10.1111/j.1600-079X.2010.00790.x

    Article  CAS  PubMed  Google Scholar 

  9. García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV (2017) Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 112:36–48. https://doi.org/10.1016/j.freeradbiomed.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  10. García-Marín R, de Miguel M, Fernández-Santos JM, Carrillo-Vico A, Utrilla JC, Morillo-Bernal J, Díaz-Parrado E, Rodríguez-Prieto I, Guerrero JM, Martín-Lacave I (2012) Melatonin-synthesizing enzymes and melatonin receptor in rat thyroid cells. Histol Histopathol 27:1429–1438. https://doi.org/10.14670/HH-27.1429

    Article  PubMed  Google Scholar 

  11. González A, del Castillo-Vaquero A, Miró-Morán A, Tapia JA, Salido GM (2011a) Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 50:250–260. https://doi.org/10.1111/j.1600-079X.2010.00834.x

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez A, Salido GM (2016) Determination of reactive oxygen species production in pancreatic acinar cells. Pancreapedia: Exocrine Pancreas Knowledge Base. doi: https://doi.org/10.3998/panc.2016.32

  13. Gonzalez A, Santofimia-Castaño P, Salido GM (2011b). Culture of pancreatic AR42J cell for use as a model for acinar cell function. Pancreapedia: Exocrine Pancreas Knowledge Base doi: https://doi.org/10.3998/panc.2011.26

  14. Gryshchenko O, Gerasimenko JV, Gerasimenko OV, Petersen OH (2016) Ca(2+) signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca(2+) channel blockade. J Physiol 594:281–293. https://doi.org/10.1113/JP271468

    Article  CAS  PubMed  Google Scholar 

  15. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  16. Jaworek J, Leja-Szpak A, Bonior J, Nawrot K, Tomaszewska R, Stachura J, Sendur R, Pawlik W, Brzozowski T, Konturek SJ (2003) Protective effect of melatonin and its precursor L-tryptophan on acute pancreatitis induced by caerulein overstimulation or ischemia/reperfusion. J Pineal Res 34:40–52

    Article  CAS  PubMed  Google Scholar 

  17. Jaworek J, Nawrot K, Konturek SJ, Leja-Szpak A, Thor P, Pawlik WW (2004) Melatonin and its precursor, L-tryptophan: influence on pancreatic amylase secretion in vivo and in vitro. J Pineal Res 36:155–164

    Article  CAS  PubMed  Google Scholar 

  18. Leja-Szpak A, Jaworek J, Pierzchalski P, Reiter RJ (2010) Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res 49:248–255. https://doi.org/10.1111/j.1600-079X.2010.00789.x

    Article  CAS  PubMed  Google Scholar 

  19. Limón-Pacheco JH, Gonsebatt ME (2010) The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent Nerv Syst Agents Med Chem 10:287–297

    Article  PubMed  Google Scholar 

  20. Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6:1186–1197

    Article  CAS  Google Scholar 

  21. McCarroll JA, Naim S, Sharbeen G, Russia N, Lee J, Kavallaris M, Goldstein D, Phillips PA (2014) Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Front Physiol 9(5):141

    Google Scholar 

  22. Muñoz-Casares FC, Padillo FJ, Briceño J, Collado JA, Muñoz-Castañeda JR, Ortega R, Cruz A, Túnez I, Montilla P, Pera C, Muntané J (2006) Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pineal Res 40:195–203. https://doi.org/10.1111/j.1600-079X.2005.00291.x

    Article  CAS  PubMed  Google Scholar 

  23. Nath R, Raser KJ, Hajimohammadreza I, Wang KK (1997) Thapsigargin induces apoptosis in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Biochem Mol Biol Int 43:197–205

    CAS  PubMed  Google Scholar 

  24. Nielsen SF, Thastrup O, Pedersen R, Olsen CE, Christensen SB (1995) Structure-activity relationships of analogues of thapsigargin modified at O-11 and O-12. J Med Chem 38:272–276

    Article  CAS  PubMed  Google Scholar 

  25. Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV (2016) Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett 381:194–200. https://doi.org/10.1016/j.canlet.2015.10.035

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez-Sánchez AM, Martín V, García-Santos G, Rodríguez-Blanco J, Casado-Zapico S, Suarez-Garnacho S, Antolín I, Rodriguez C (2011) Intracellular redox state as determinant for melatonin antiproliferative vs cytotoxic effects in cancer cells. Free Radic Res 45:1333–1341. https://doi.org/10.3109/10715762.2011.623700

    Article  CAS  PubMed  Google Scholar 

  27. Sallinen P, Saarela S, Ilves M, Vakkuri O, Leppäluoto J (2005) The expression of MT1 and MT2 melatonin receptor mRNA in several rat tissues. Life Sci 76:1123–1134

    Article  CAS  PubMed  Google Scholar 

  28. Santofimia-Castaño P, Clea Ruy D, Garcia-Sanchez L, Jimenez-Blasco D, Fernandez-Bermejo M, Bolaños JP, Salido GM, Gonzalez A (2015a) Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med 87:226–236. https://doi.org/10.1016/j.freeradbiomed.2015.06.033.

    Article  PubMed  Google Scholar 

  29. Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A (2015b) Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 31:95–110. https://doi.org/10.1007/s10565-015-9297-6.

    Article  PubMed  Google Scholar 

  30. Santofimia-Castaño P, Ruy DC, Salido GM, González A (2013a) Melatonin modulates Ca2+ mobilization and amylase release in response to cholecystokinin octapeptide in mouse pancreatic acinar cells. J Physiol Biochem 69:897–908. https://doi.org/10.1007/s13105-013-0267-2

    Article  CAS  PubMed  Google Scholar 

  31. Santofimia-Castaño P, Salido GM, González A (2013b) Ebselen alters mitochondrial physiology and reduces viability of rat hippocampal astrocytes. DNA Cell Biol 32:147–155. https://doi.org/10.1089/dna.2012.1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strobel O, Dadabaeva N, Felix K, Hackert T, Giese NA, Jesenofsky R, Werner J (2016) Isolation and culture of primary human pancreatic stellate cells that reflect the context of their tissue of origin. Langenbeck's Arch Surg 401:89–97. https://doi.org/10.1007/s00423-015-1343-6

    Article  Google Scholar 

  34. Sutton R, Petersen OH, Pandol SJ (2008) Pancreatitis and calcium signalling: report of an international workshop. Pancreas 36:e1–e14. https://doi.org/10.1097/MPA.0b013e3181675010

  35. Zha M, Li F, Xu W, Chen B, Sun Z (2014) Isolation and characterization of islet stellate cells in rat. Islets 6:e28701. https://doi.org/10.4161/isl.28701

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partly funded by the Ministerio de Economía y Competitividad (BFU2016-79259-R; UNEX13-1E-1608) and Junta de Extremadura-FEDER (IB16006). The funding sources had no role in the study design; in the collection, analysis, and interpretation of the data; in the writing of the report; and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gonzalez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estaras, M., Moreno, N., Santofimia-Castaño, P. et al. Melatonin induces reactive oxygen species generation and changes in glutathione levels and reduces viability in human pancreatic stellate cells. J Physiol Biochem 75, 185–197 (2019). https://doi.org/10.1007/s13105-019-00671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00671-x

Keywords

Navigation