Skip to main content
Log in

On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We construct two-term asymptotics \(\lambda ^\varepsilon _k= \varepsilon ^{m-2}(M+\varepsilon \mu _k+ O(\varepsilon ^{3/2}) )\) of eigenvalues of a mixed boundary-value problem in \(\Omega \subset {{\mathbb {R}}}^2\) with many heavy (\(m>2\)) concentrated masses near a straight part \(\Gamma \) of the boundary \(\partial \Omega \). \(\varepsilon \) is a small positive parameter related to size and periodicity of the masses; \(k\in {\mathbb N}\). The main term \(M>0\) is common for all eigenvalues but the correction terms \(\mu _k\), which are eigenvalues of a limit problem with the spectral Steklov boundary conditions on \(\Gamma \), exhibit the effect of asymptotic splitting in the eigenvalue sequence enabling the detection of asymptotic forms of eigenfunctions. The justification scheme implies isolating and purifying singularities of eigenfunctions and leads to a new spectral problem in weighed spaces with a “strongly” singular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arrieta, J.M., Jiménez-Casas, A., Rodríguez-Bernal, A.: Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating at the boundary. Rev. Mat. Iberoam. 24(1), 183–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birman, M.S., Solomyak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. Reidel Publ. Company, Dordrecht (1987)

    MATH  Google Scholar 

  4. Campillo, M., Dascalu, C., Ionescu, I.: Inestability of a periodic systems of faults. Geophys. J. Int. 159, 212–222 (2004)

    Article  Google Scholar 

  5. Chechkin, G.A.: Asymptotic expansion of the eigenelements of the Laplace operator in a domain with a large number of “light” concentrated masses sparsely located on the boundary: the two-dimensional case. Tr. Mosk. Mat. Obs. 70, 102–182 (2009) [English transl.: Trans. Moscow Math. Soc. 71–134 (2009)]

  6. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem. J. Spectr. Theory 7(2), 321–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gómez, D., Lobo, M., Nazarov, S.A., Pérez, E.: Spectral stiff problems in domains surrounded by thin bands: asymptotic and uniform estimates for eigenvalues. J. Math. Pures Appl. 85(4), 598–632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gómez, D., Lobo, M., Nazarov, S.A., Pérez, E.: Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems. J. Math. Pures Appl. 86(5), 369–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gómez, D., Nazarov, S.A., Pérez, E.: Spectral stiff problems in domains surrounded by thin stiff and heavy bands: local effects for eigenfunctions. Netw. Heterog. Media 6(1), 1–35 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kondratiev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Tr. Mosk. Mat. Obs. 16, 209–292 (1967) [English transl. Trans. Moscow Math. Soc. 16, 227–313 (1967)]

  11. Kondratiev, V.A.: Singularities of the solution of the Dirichlet problem for a second order elliptic equation in the neighborhood of an edge. Differencial’nye Uravnenija 13, 2026–2032 (1977) [English transl. Differ. Equ. 13, 1411–1415 (1977)]

  12. Lamberti, P.D., Provenzano, L.: Neumann to Steklov eigenvalues: asymptotic and monotonicity results. Proc. R. Soc. Edinb. Sect. A 147(2), 429–447 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lobo, M., Nazarov, S.A., Pérez, E.: Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues. IMA J. Appl. Math. 70(3), 419–458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lobo, M., Pérez, E.: On vibrations of a body with many concentrated masses near the boundary. Math. Models Methods Appl. Sci. 3(2), 249–273 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lobo, M., Pérez, E.: Vibrations of a body with many concentrated masses near the boundary: high frequency vibrations. In: Sanchez-Palencia, E. (ed.) Spectral Analysis of Complex Structures, Travaux en Cours 49, Hermann, Paris, pp. 85–101 (1995)

  16. Lobo, M., Pérez, E.: Vibrations of a membrane with many concentrated masses near the boundary. Math. Models Methods Appl. Sci. 5(5), 565–585 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lobo, M., Pérez, E.: The skin effect in vibrating systems with many concentrated masses. Math. Methods Appl. Sci. 24(1), 59–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lobo, M., Pérez, E.: Local problems in vibrating systems with concentrated masses: a review. C. R. Mec. 331, 303–317 (2003)

    Article  MATH  Google Scholar 

  19. Lobo, M., Pérez, E.: Long time approximations for solutions of wave equations associated with the Steklov spectral homogenization problems. Math. Methods Appl. Sci. 33, 1356–1371 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Maz’ja, V.G., Plamenevskii, B.A.: Estimates in \(L_p\) and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr. 81, 25–82 (1978) [English transl.: Am. Math. Soc. Transl. Ser. 2 123, 1–56 (1984)]

  21. Maz’ja, V.G., Plamenevskii, B.A.: On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Math. Nachr. 76, 29–60 (1977) [English transl.: Am. Math. Soc. Transl. 123, 57–89 (1984)]

  22. Mel’nyk, T.A.: Vibrations of a thick periodic junction with concentrated masses. Math. Models Methods Appl. Sci. 11(6), 1001–1027 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mikhlin, S.G.: Variational Methods in Mathematical Physics, International Series of Monographs in Pure and Applied Mathematics, vol. 50. Pergamon Press, Frankfurt (1964)

    Google Scholar 

  24. Nazarov, S.A.: Asymptotics of the solution of a Dirichlet problem in an angular domain with a periodically changing boundary. Mat. Zametki 49(5), 86–96 (1991) [English transl.: Math. Notes 49(5), 502–509 (1991)]

  25. Nazarov, S.A.: Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions. RAIRO Modél. Math. Anal. Numér. 27(6), 777–799 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazarov, S.A.: Asymptotic Theory of Thin Plates and Rods, vol. 1. Dimension Reduction and Integral Estimates. Nauchnaya Kniga, Novosibirck (2002)

    Google Scholar 

  27. Nazarov, S.A.: Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate. Probl. Mat. Analiz. 25. Nauchnaya Kniga, Novosibirsk, pp. 99–188 (2003) [English transl.: J. Math. Sci. 114(5), 1657–1725 (2003)]

  28. Nazarov, S.A.: Asymptotic behavior of eigenvalues of the Neumann problem for systems with masses concentrated on a thin toroidal set. Vestnik St. Petersburg Univ. Math. 3, 61–71 (2006) [English transl.: Vestnik St. Petersburg Univ. Math. 39(3), 149–157 (2006)]

  29. Nazarov, S.A.: The Neumann problem in angular domains with periodic boundaries and parabolic perturbations of the boundaries. Tr. Mosk. Mat. Obs. 69, 182–241 (2008) [English transl. Trans. Moscow Math. Soc. 67, 153–208 (2008)]

  30. Nazarov, S.A.: Asymptotics of eigenvalues of boundary value problems for the Laplace operator in a spatial domain with a thin excluded tube. Tr. Mosk. Mat. Obs. 76(1), 1–66 (2015) [English transl.: Trans. Moscow Math. Soc.76(1), 1–53 (2015)]

  31. Nazarov, S.A., Plamenevskii, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter de Gruyter, Berlin (1994)

    Book  Google Scholar 

  32. Nazarov, S.A., Pérez, E.: New asymptotic effects for the spectrum of problems on concentrated masses near the boundary. C. R. Mec. 337, 585–590 (2009)

    Article  Google Scholar 

  33. Nazarov, S.A., Sweers, G.: A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners. J. Differ. Equ. 233(1), 151–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nikishkin, V.A.: Singularities of the solution to the Dirichlet problem for second-order elliptic equation in a neighborhood of an edge. Vestnik Moskov. Univ. Ser. I. Mat. Mekh. 2, 51–62 (1979) [English transl. Moscow Univ. Math. Bull. 2, 53–64 (1979)]

  35. Oleinik, O.A.: Homogenization problems in elasticity. Spectra of singularly perturbed operators. In: Nonclassical Continuum Mechanics (Durham, 1986), London Math. Soc. Lecture Note Ser. 122, pp. 53–95, Cambridge Univ. Press, Cambridge (1987)

  36. Pérez, E.: Spectral convergence for vibrating systems containing a part with negligible mass. Math. Methods Appl. Sci. 28(10), 1173–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pérez, E.: On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete Contin. Dyn. Syst. Ser. B 7(4), 859–883 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pérez, E.: Long time approximations for solutions of wave equations via standing waves from quasimodes. J. Math. Pures Appl. 90(4), 387–411 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sanchez-Palencia, E.: Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses. In: Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983). Lecture Notes in Phys. vol. 195, pp. 346–368. Springer, Berlin (1984)

  40. Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90(3), 239–271 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vishik, M.I.: Boundary-value problems for elliptic equations degenerating on the boundary of a region. Mat. Sb. N.S. 35(77), 513–568 (1954) [Engl. Transl.: Trans. Am. Math. Soc. 35, 15–78 (1954)]

  42. Vishik, M.I., Lyusternik, L.A.: Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekhi Mat. Nauk. 12(5), 3–122 (1957) [English transl.: Am. Math. Soc. Transl. Ser. 2 20, 239–364 (1962)]

Download references

Acknowledgements

This research work has been partially supported by Spanish MINECO, MTM2013-44883-P. Also, the research work of the first author has been partially supported by Russian Foundation of Basic research (Project 15–01–02175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eugenia Pérez.

A Appendix

A Appendix

The material of this appendix complements Sect. 2 and supports the estimate (5.49) which lead us to Proposition 5.5.

1.1 A.1 The homogeneous Kondratiev norms

Let us consider the model mixed boundary-value problem in the half-plane

$$\begin{aligned} \displaystyle -\Delta v= & {} f \quad \text{ in } \,{{\mathbb {R}}}^2_+, \end{aligned}$$
(A.1)
$$\begin{aligned} \displaystyle v= & {} 0 \quad \text{ on } \{x:\, x_2=0 , \, x_1>0\} ,\quad \frac{\partial v}{\partial x_2} =0\quad \text{ on } \{x:\, x_2=0,\, x_1>0\}\qquad \quad \end{aligned}$$
(A.2)

within the Kondratiev theory [10]. By \(V^l_\beta ({{\mathbb {R}}}^2_+)\), with the indexes of smoothness \(l\in {\mathbb N}_0\) and weight \(\beta \in {{\mathbb {R}}}\), we denote the completion of the linear space \(C^\infty _c\left( \overline{{{\mathbb {R}}}^2_+}{\setminus }{{\mathcal {O}}}\right) \) in the homogeneous weighted norm

$$\begin{aligned} \Vert u;V^l_\beta ({{\mathbb {R}}}^2_+)\Vert =\left( \,\sum \limits _{j=0}^l \left\| r^{\beta -l+j}\nabla ^j u;L^2({{\mathbb {R}}}^2_+)\right\| ^2\right) ^{1/2}, \end{aligned}$$

where \((r,\varphi )\) is the polar coordinate system centered at the coordinate origin \({\mathcal {O}}\), the collision point, and \(\nabla ^j u\) denotes all partial derivatives of u of order j. It is known, see [10] and, e.g., Ch. 2 in [31], that, for any \(l\in {\mathbb N}\), the operator

$$\begin{aligned} \displaystyle {\mathcal A}^l_\beta :\,\Big \{v\in V^{l+1}_\beta ({{\mathbb {R}}}^2_+):\, v\,\,\hbox { satisfies}\,\,(\hbox {A}.2)\Big \} \quad \rightarrow \quad V^{l-1}_\beta ({{\mathbb {R}}}^2_+) \end{aligned}$$
(A.3)

of problem (A.1), (A.2) is Fredholm if and only if \(\beta -l\not =\beta _{\pm j}:=\pm (j+1/2)\) with \(j\in {\mathbb N}_0\); otherwise, the range of (A.3) is not closed in \(V^{l-1}_\beta ({{\mathbb {R}}}^2_+)\). The forbidden indexes \(\beta _{\pm j}\) are closely connected to exponents (2.17) in harmonics (2.16).

If \(v\in V^{l+1}_\beta ({{\mathbb {R}}}^2_+)\) is a solution of problem (A.1), (A.2) with the right-hand side \(f\in V^{l-1}_{\beta -2}({{\mathbb {R}}}^2_+)\) and

$$\begin{aligned}&\displaystyle |\beta -l|<\frac{1}{2}, \end{aligned}$$
(A.4)
$$\begin{aligned}&\displaystyle \hbox { supp}\,f\subset \left\{ x\in {{\mathbb {R}}}^2_+:\,r\le 1\right\} , \end{aligned}$$
(A.5)

then

$$\begin{aligned} \displaystyle v(x)=\varsigma (r)\Big (Kr^{1/2}\sin \frac{\varphi }{2}+ K^1r^{3/2}\sin \frac{3\varphi }{2}\Big )+{\widetilde{v}}(x) \end{aligned}$$
(A.6)

where the coefficients K, \(K^1\) and the remainder \(\widetilde{u} \in V^{l+1}_{\beta -2}({{\mathbb {R}}}^2_+)\) satisfy the estimate

$$\begin{aligned} \displaystyle |K|+|K^1|+\Vert {\widetilde{v}};V^{l+1}_{\beta -2}({{\mathbb {R}}}^2_+)\Vert \le c \Vert f;V^{l-1}_{\beta -2}({{\mathbb {R}}}^2_+)\Vert . \end{aligned}$$
(A.7)

We emphasize that mapping (A.3) becomes an isomorphism under restriction (A.4) and the inclusion \(f\in V^{l-1}_{\beta -2}({{\mathbb {R}}}^2_+)\) implies a faster decay rate as \(r\rightarrow 0^+\) than the decay rate of \(\Delta v\in V^{l-1}_\beta ({{\mathbb {R}}}^2_+)\) prescribed by the original inclusion \(v\in V^{l+1}_\beta ({{\mathbb {R}}}^2_+)\). In the same way, formula (A.6) gives the asymptotics of the solution v in the radial variable r.

1.2 A.2 The multi-scaled weighted norms

Considering the Rayleigh principle for the spectral problem

$$\begin{aligned} - \Phi ''(t)=\Lambda \Phi (t)\, \text{ for } \, t\in (0,\pi ), \quad \Phi (0)=0, \Phi '(\pi )=0, \end{aligned}$$

and the angular variable \(t=\varphi \), a function in \(\{v\in V^1_\beta ({{\mathbb {R}}}^2_+):\,v(x_1,0)=0,\,x_1>0\}\) satisfies

$$\begin{aligned} \begin{aligned}&\int \limits _{{{\mathbb {R}}}^2_+}\, r^{2\beta -2}\left| v(x)\right| ^2dx= \int \limits _{{{\mathbb {R}}}_+}\int \limits _0^\pi \, r^{2\beta -2}\left| v(x)\right| ^2rdrd\varphi \\&\quad \le \,4\int \limits _{{{\mathbb {R}}}_+}\int \limits _0^\pi \, r^{2\beta }\Big | \frac{1}{r}\, \frac{\partial v}{\partial \varphi }(x)\Big |^2rdrd\varphi \le 4\int \limits _{{{\mathbb {R}}}^2_+}\, r^{2\beta }\left| \nabla v(x)\right| ^2dx. \end{aligned} \end{aligned}$$

This apparent observation was suggested in [24] to introduce multi-scaled weighted space \({\mathcal V}^{l,0}_{\beta ,\gamma }({{\mathbb {R}}}^2_+)\) in two-dimensional angular domains with the norm

$$\begin{aligned} \displaystyle \Vert u;{\mathcal V}^{l,0}_{\beta ,\gamma }({{\mathbb {R}}}^2_+)\Vert =\left( \,\sum \limits _{j=0}^l \left\| r^{\beta -l+j}\varphi ^{\gamma -l+j}\nabla ^j u;L^2({{\mathbb {R}}}^2_+)\right\| ^2\right) ^{1/2} \end{aligned}$$
(A.8)

involving two weights, radial and angular, with different weight exponents \(\beta \) and \(\gamma \). Such function spaces are convenient in the investigation of different perturbations of the boundary of the angular domain, cf. [24, 29].

If restrictions (A.4) and

$$\begin{aligned} \displaystyle \gamma -l\in \Big (-\frac{1}{2},\frac{1}{2}\Big ) \end{aligned}$$
(A.9)

are satisfied, the operator

$$\begin{aligned} \displaystyle {\mathcal A}^l_{\beta ,\gamma }:\,\Big \{v\in {\mathcal V}^{l+1,0}_{\beta ,\gamma } ({{\mathbb {R}}}^2_+):\,\frac{\partial v}{\partial x_2}(x_1,0){ = 0}, \,\,x_1<0\Big \} \rightarrow {\mathcal V}^{l-1}_{\beta ,\gamma }({{\mathbb {R}}}^2_+) \end{aligned}$$
(A.10)

of problem (A.1), (A.2) is an isomorphism and in the case of the right-hand side \(f\in V^{l-1}_{\beta -2,\gamma ^1}({{\mathbb {R}}}^2_+)\) with the compact support (A.5) and the second weight index \(\gamma ^1\in (0,\gamma ]\) the asymptotic representation (A.6) is valid where the remainder \({\widetilde{v}}\in {\mathcal V}^{l+1,0}_{\beta ,\gamma ^1}({{\mathbb {R}}}^2_+)\) and the coefficients K, \(K^1\) satisfy appropriately modified estimate (A.7).

We emphasize that the Dirichlet condition at the semi-axis \({{\mathbb {R}}}_+\ni x_1\) does not appear explicitly in the domain of the operator (A.10) because, by virtue of the restriction \(\gamma <1/2\), the assumption \(v(r,0)\not =0\) leads to the divergent integral

$$\begin{aligned} \displaystyle \int \limits _0^\pi \varphi ^{2(\gamma -l-1)}|v(r,\varphi )|^2d\varphi . \end{aligned}$$
(A.11)

1.3 A.3 Weighted spaces with detached asymptotics

Under condition (A.9) operator (A.10) stays Fredholm for any \(\beta \in {{\mathbb {R}}}\) with the exception of the forbidden indexes \(\beta _{\pm j}\) indicated in Section A.1. However, denying (A.9) deprives the operator of the Fredholm property. For example, in the case \(\gamma -l<-1/2\) a function \(v\in {\mathcal V}_{\beta ,\gamma }^{l+1}({{\mathbb {R}}}^2_+)\) has a finite norm only under the two conditions \(v(x_1,0)=0\) and \(\displaystyle \frac{\partial v}{\partial x_2}(x_1,0)=0\) on the semi-axis \({{\mathbb {R}}}_+\). The latter is not possible for a non-trivial harmonics due to the theorem on unique extension. To vary the second weight index \(\gamma \) requires detaching asymptotics, cf. Ch. 12 in [31], namely to deal with functions in the form

$$\begin{aligned} \displaystyle v(x)= {\mathcal {K}}(r) r^{1/2}\sin \frac{\varphi }{2} +{\mathcal {K}}^1(r) r^{3/2}\sin \frac{3\varphi }{2} +{\widetilde{v}}(x). \end{aligned}$$
(A.12)

The remainder \({\widetilde{v}}\) must belong to the space \({\mathcal V}^{l+1}_{\beta ,\gamma }({{\mathbb {R}}}_+^2)\) with the weighted norm

$$\begin{aligned} \displaystyle \Vert {\widetilde{v}};{\mathcal V}^{l+1}_{\beta ,\gamma }({{\mathbb {R}}}_+^2)\Vert = \left( \,\sum \limits _{j=0}^{l+1} \left\| r^{\beta -l-1+j}\varphi ^{\gamma -l-1+j}(\pi -\varphi )^{\gamma -l-1+j}\nabla ^j {\widetilde{v}};L^2({{\mathbb {R}}}^2_+)\right\| ^2\right) ^{1/2} \end{aligned}$$
(A.13)

and the weight indexes

$$\begin{aligned} \displaystyle \beta -l\in \left( -\frac{1}{2},\frac{1}{2}\right) ,\quad \gamma -l \in \left( -\frac{3}{2},-\frac{1}{2}\right) . \end{aligned}$$
(A.14)

We emphasize that now, in contrast to (A.8), weights are introduced in (A.13) at both endpoints of the arc \((0,\pi )\) while the restriction on \(\gamma \) in (A.14) demands that the remainder \({\widetilde{v}} \in { {\mathcal V}}^{l+1}_{\beta ,\gamma }({{\mathbb {R}}}_+^2)\) satisfies formulas

$$\begin{aligned} {\widetilde{v}}(x_1,0)=0,\,\,\frac{\partial {\widetilde{v}}}{\partial x_2}(x_1,0)=0\,\, \quad \hbox { for}\,\, x_1\in {{\mathbb {R}}}{\setminus }\{0\}; \end{aligned}$$

otherwise, norm (A.13) cannot be finite because of the divergence of the integral [similar to (A.11)]

$$\begin{aligned} \int \limits _0^\pi \varphi ^{2(\gamma -l-1)} (\pi -\varphi )^{2(\gamma -l-1)}|{\widetilde{v}}(r,\varphi )|^2d\varphi . \end{aligned}$$

Hence, according to (A.12), we have

$$\begin{aligned} \begin{aligned} \displaystyle v(r,0)&=0,\,\,\frac{\partial v}{\partial x_2}(r,0)=\frac{1}{2}\, r^{-1/2}{\mathcal {K}}(r) + \frac{3}{2}\, r^{1/2}{\mathcal {K}}^1(r) \quad \hbox {for}\quad x_1=r>0,\\ \displaystyle v(r,0)&= r^{1/2}{\mathcal {K}}(r)- r^{3/2}{\mathcal {K}}^1(r),\,\,\frac{\partial v}{\partial x_2}(r,0)= 0 \,\,\, \quad \hbox { for}\,\, x_1=-r<0. \end{aligned} \end{aligned}$$
(A.15)

Roughly speaking, to compose from functions (A.12) a weighted space with detached asymptotics by means of a procedure in Ch. 12 of [31] requires setting the coefficient functions \({\mathcal {K}}{ (r)}\), \({\mathcal {K}}^1{ (r)}\) in a certain weighted Kondratiev space and incorporating their norms together with norm (A.13) into the norm of the whole function v. Additional difficulties originate in insufficient smoothness properties of the coefficients: according to (A.15) none of the traces \(v\big |_{{{\mathbb {R}}}_\pm }\) and \( \displaystyle \frac{\partial v}{\partial x_2}\Big |_{{{\mathbb {R}}}_\pm }\) and, therefore, none of \({\mathcal {K}}\) and \({\mathcal {K}}^1\) belongs to the proper space \(H^{l+1}({{\mathbb {R}}}_\pm )\). The latter requires the introduction of special extension operators into the asymptotic forms of type (A.12) (cf. [11, 34] and Ch. 12 in [31]). To avoid unnecessary complications, we consider a particular case with an infinitely differentiable right-hand side f vanishing near the coordinate origin, we deal with the model differential equation corresponding to the original problem at collision points

$$\begin{aligned} \displaystyle -\Delta v -\mu H v = f \quad \text{ in } \quad {{\mathbb {B}}}^+_R, \end{aligned}$$
(A.16)

and we write only an asymptotic formula for a solution of (A.16), (A.2) near the point \({{\mathcal {O}}}\). In (A.16), \(\mu \in {{\mathbb {R}}}_+\), \(H=H(x_1)\) is the Heaviside unit step function and \({{\mathbb {B}}}^+_R=\{x:\, |x|<R, x_2>0\}\) is the upper half-disk of radius \(R>0\). We have the following result.

Proposition A.1

Let \(v\in H^1({{\mathbb {B}}}^+_R)\cap H^2_{loc}(\overline{{{\mathbb {B}}}^+_R}{\setminus }{{\mathcal {O}}})\) satisfy equation (A.16) with

$$\begin{aligned} f\in L^2({{\mathbb {B}}}^+_R)\,\, \text{ and }\,\, f(x)=0 \text{ for } r<R/2, \end{aligned}$$

and the boundary conditions (A.2) for \(r\in (0,R)\). Then v falls into \({\mathcal V}^2_{1, \gamma }({{\mathbb {B}}}^+_{2R/3})\) with any \(\gamma \in (1/2,3/2)\) and admits the asymptotic form

$$\begin{aligned} \displaystyle v(x)=\varsigma (r)\left( {\mathcal {K}}(r) r^{1/2}\sin \frac{\varphi }{2} +{\mathcal {K}}^1(r) r^{3/2}\sin \frac{3\varphi }{2}\right) +{\widetilde{v}}(x) \,\,\,\,\textit{ for}\,\,\, r\le \frac{1}{3}R, \end{aligned}$$
(A.17)

where the remainder \({\widetilde{v}}\) and the coefficients

$$\begin{aligned} {\mathcal {K}}(r)=K+\widetilde{{\mathcal {K}}}(r), \quad {\mathcal {K}}^1(r)=K^1+\widetilde{{\mathcal {K}}}^{\,1}(r) \end{aligned}$$

fulfill the estimate

$$\begin{aligned} \begin{aligned}&\sum \limits _{j= 0,1}\Big (r^{-2+j}\big |\partial ^j_r \widetilde{{\mathcal {K}}}(r)\big | +r^{-1+j}\big |\partial ^j_r \widetilde{{\mathcal {K}}}^{\,1}(r)\big | +r^{-2+j}\varphi ^{-2+j} (\pi -\varphi )^{-2+j}\big |\nabla ^j {\widetilde{v}}(x)\big |\Big ) \\&\quad + |K|+|K^1| \le c\Big (\Vert f;L^2({{\mathbb {B}}}^+_R{\setminus }{{\mathbb {B}}}^+_{{ R}/2})\Vert + \Vert v;H^1({{\mathbb {B}}}^+_R)\Vert \Big ) \,\,\quad \textit{ for}\,\, r\le \frac{1}{3}R. \end{aligned} \end{aligned}$$
(A.18)

Formulas (A.17) and (A.18) suffice to support all the calculations and estimations for the quotient function (2.29) in Sects. 2.4 and 5.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A., Pérez, M.E. On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary. Rev Mat Complut 31, 1–62 (2018). https://doi.org/10.1007/s13163-017-0243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-017-0243-4

Keywords

Mathematics Subject Classification

Navigation