Skip to main content
Log in

Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

Spatio-temporal data indexed by sampling locations and sampling time points are encountered in many scientific disciplines such as climatology, environmental sciences, and public health. Here, we propose a novel spatio-temporal expanding distance (STED) asymptotic framework for studying the properties of statistical inference for nonstationary spatio-temporal models. In particular, to model spatio-temporal dependence, we develop a new class of locally stationary spatio-temporal covariance functions. The STED asymptotic framework has a fixed spatio-temporal domain for spatio-temporal processes that are globally nonstationary in a rescaled fixed domain and locally stationary in a distance expanding domain. The utility of STED is illustrated by establishing the asymptotic properties of the maximum likelihood estimation for a general class of spatio-temporal covariance functions. A simulation study suggests sound finite-sample properties and the method is applied to a sea-surface temperature dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Bandyopadhyay, S. and Rao, S.S. (2017). A test for stationarity for irregularly spaced spatial data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79, 95–123.

    Article  MathSciNet  Google Scholar 

  • Bandyopadhyay, S., Jentsch, C. and Subba Rao, S. (2017). A spectral domain test for stationarity of spatio-temporal data. J. Time Ser. Anal. 38, 326–351.

    Article  MathSciNet  Google Scholar 

  • Chang, J., Guo, B. and Yao, Q. (2015). High dimensional stochastic regression with latent factors, endogeneity and nonlinearity. J. Econ. 189, 297–312.

    Article  MathSciNet  Google Scholar 

  • Chu, T., Zhu, J. and Wang, H. (2011). Penalized maximum likelihood estiamtion and variable selection in geostatistics. Ann. Stat. 39, 2607–2625.

    Article  Google Scholar 

  • Cressie, N. (2018). Mission co2ntrol: a statistical scientist’s role in remote sensing of atmospheric carbon dioxide (with discussion). J. Am. Stat. Assoc. 113, 152–168.

    Article  Google Scholar 

  • Cressie, N. and Huang, H.C. (1999). Classes of nonseparable spatio-temporal stationary covariance functions. J. Am. Stat. Assoc. 94, 1330–1340.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. and Lahiri, S. (1993). The asymptotic distribution of REML estimators. J. Multivar. Anal. 45, 217–233.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. and Wikle, C.K. (2011). Statistics for Spatio-Temporal Data. Wiley, New York.

    MATH  Google Scholar 

  • Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Ann. Stat. 25, 1–37.

    Article  MathSciNet  Google Scholar 

  • Dahlhaus, R. (2012). Locally stationary processes, 30. Elsevier, Amsterdam, p. 351–413.

  • Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York.

    Book  Google Scholar 

  • Fuentes, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika 89, 197–210.

    Article  MathSciNet  Google Scholar 

  • Fuentes, M. (2006). Testing for separability of spatial–temporal covariance functions. Journal of Statistical Planning and Inference 136, 447–466.

    Article  MathSciNet  Google Scholar 

  • Fuentes, M., Chen, L. and Davis, J.M. (2008). A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 19, 487–507.

    Article  MathSciNet  Google Scholar 

  • Gelfand, A.E., Diggle, P.J., Fuentes, M. and Guttorp, P. (2010). Handbook of Spatial Statistics. Boca RatonL, Chapman & Hall/CRC.

    Book  Google Scholar 

  • Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. J. Am. Stat. Assoc. 97, 590–600.

    Article  MathSciNet  Google Scholar 

  • Guinness, J. and Fuentes, M. (2015). Likelihood approximations for big nonstationary spatial temporal lattice data. Stat. Sin. 25, 329–349.

    MathSciNet  MATH  Google Scholar 

  • Hall, P. and Patil, P. (1994). Properties of nonparametric estimators of autocovariance for stationary random fields. Probab. Theory Relat. Fields 99, 399–424.

    Article  MathSciNet  Google Scholar 

  • Higdon, D. (1998). A process-convolution approach to modelling temperatures in the north atlantic ocean. Environ. Ecol. Stat. 5, 173–190.

    Article  Google Scholar 

  • Hsing, T., Brown, T. and Thelen, B. (2016). Local intrinsic stationarity and its inference. Ann. Stat. 44, 2058–2088.

    Article  MathSciNet  Google Scholar 

  • Jun, M. and Genton, M.G. (2012). A test for stationarity of spatio-temporal random fields on planar and spherical domains. Stat. Sin. 22, 1737–1764.

    MathSciNet  MATH  Google Scholar 

  • Kuusela, M. and Stein, M.L. (2018). Locally stationary spatio-temporal interpolation of Argo profiling float data. Proceedings of the Royal Society A 474, 20180400.

    Article  Google Scholar 

  • Lahiri, S. (2003). Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs. Sankhya, Series A 65, 356–388.

    MathSciNet  MATH  Google Scholar 

  • Liang, X., Zou, T., Guo, B., Li, S., Zhang, H., Zhang, S., Huang, H. and Chen, S.X. (2015). Assessing Beijing’s PM2.5 pollution: severity, weather impact, apec and winter heating. Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci. 471, 20150257.

    Article  Google Scholar 

  • Loh, W.L. (2005). Fixed-domain asymptotics for a subclass of Matérn-type gaussian random fields. Ann. Stat. 33, 2344–2394.

    Article  Google Scholar 

  • Lu, Z. and Tjøstheim, D. (2014). Nonparametric estimation of probability density functions for irregularly observed spatial data. Journal of the American Statistical Association 109, 1546–1564.

    Article  MathSciNet  Google Scholar 

  • Ludwig, G., Chu, T., Zhu, J., Wang, H. and Koehler, K. (2017). Static and roving sensor data fusion for spatio-temporal hazard mapping with application to occupational exposure assessment. The Annals of Applied Statistics 11, 139–160.

    Article  MathSciNet  Google Scholar 

  • Mardia, K.V. and Marshall, R.J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71, 135–146.

    Article  MathSciNet  Google Scholar 

  • Mitchell, M.W., Genton, M.G. and Gumpertz, M.L. (2005). Testing for separability of space–time covariances. Environmetrics: The official journal of the International Environmetrics Society 16, 819–831.

    Article  MathSciNet  Google Scholar 

  • Mitchell, M.W., Genton, M.G. and Gumpertz, M.L. (2006). A likelihood ratio test for separability of covariances. J. Multivar. Anal. 97, 1025–1043.

    Article  MathSciNet  Google Scholar 

  • Paciorek, C.J. and Schervish, M.J. (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17, 483–506.

    Article  MathSciNet  Google Scholar 

  • Porcu, E., Alegria, A. and Furrer, R. (2018). Modeling temporally evolving and spatially globally dependent data. Int. Stat. Rev. 86, 344–377.

    Article  MathSciNet  Google Scholar 

  • Sherman, M. (2011). Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties. Wiley, West Sussex.

    MATH  Google Scholar 

  • Stein, M.L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.

    Book  Google Scholar 

  • Stein, M.L. (2005). Space-time covariance functions. J. Am. Stat. Assoc. 100, 310–321.

    Article  MathSciNet  Google Scholar 

  • Sweeting, T. (1980). Uniform asymptotic normality of the maximum likelihood estimator. Ann. Stat., 1375–1381.

  • Vogt, M. (2012). Nonparametric regression for locally stationary time series. Ann. Stat. 40, 2601–2633.

    Article  MathSciNet  Google Scholar 

  • Yao, Q. and Brockwell, P.J. (2006). Gaussian maximum likelihood estimation for ARMA models II: spatial processes. Bernoulli 12, 403–429.

    Article  Google Scholar 

  • Ying, Z. (1993). Maximum likelihood estimation of parameters under a spatial sampling scheme. Ann. Stat. 21, 1567–1590.

    Article  MathSciNet  Google Scholar 

  • Zhang, H. (2004). Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics. J. Am. Stat. Assoc. 99, 250–261.

    Article  Google Scholar 

  • Zhou, Z. and Wu, W.B. (2009). Local linear quantile estimation for nonstationary time series. Ann. Stat. 37, 2696–2729.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor, the Associate Editor and the referees for their helpful comments. The research of Haonan Wang was partially supported by NSF grants DMS-1737795, DMS-1923142 and CNS-1932413. This work is in part supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G16AC00344. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingjin Chu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A.1: Proof of Proposition 1

Proof.

First, it can be seen that the generalized spatio-temporal Matérn covariance function in Eq. 1 is bounded and twice continuously differentiable with respect to 𝜃; thus, (LS.4) is satisfied. Next, we will show that the generalized spatio-temporal Matérn covariance function satisfies (LS.1) and (LS.2).

For any u1 and u2, define

$$ \begin{array}{@{}rcl@{}} \begin{array}{ll} h(\boldsymbol{u}_{1},u_{2}) =\left\{ \begin{array}{ll} \frac{ \theta_{3}^{d/2}2^{1-\nu}}{({\theta_{1}^{2}}{u_{2}^{2}}+1)^{\nu}({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})^{d/2}{\Gamma}(\nu)}m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})^{\nu}K_{\nu}\left\{m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})\right\}, & \text{if} ~ \Vert \boldsymbol{u}_{1}\Vert>0, \\ \frac{ \theta_{3}^{d/2}}{({\theta_{1}^{2}}{u_{2}^{2}}+1)^{\nu}({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})^{d/2}}, & \text{if}~\Vert \boldsymbol{u}_{1}\Vert=0. \end{array} \right. \end{array} \end{array} $$

For any s and t, let

$$ \begin{array}{@{}rcl@{}} \begin{array}{ll} &g_{n}(\boldsymbol{s}^{\prime}-\boldsymbol{s},t^{\prime}-t,\boldsymbol{s},t) = g(\boldsymbol{u}_{1},u_{2},\boldsymbol{s},t)\\ &=\left\{ \begin{array}{ll} D(\boldsymbol{s},t)^{2}\sigma^{2} h(\boldsymbol{u}_{1},u_{2}), & \text{if} ~ \Vert \boldsymbol{u}_{1}\Vert>0 ~\text{or}~ |u_{2}|>0, \\ D(\boldsymbol{s},t)^{2}\sigma^{2} + \tau^{2}, & \text{otherwise}. \end{array} \right. \end{array} \end{array} $$

Then, γn((s, t),(s, t)) = g(0,0,s, t). For all \((\boldsymbol {s},t), (\boldsymbol {s}+{\boldsymbol {u}_{1}}/{\varrho _{1,n}},t+{u_{2}}/{\varrho _{2,n}}) \in \mathcal {R}\times \mathcal {T}\) with ∥u1∥ > 0 or |u2| > 0, we have

$$ \begin{array}{@{}rcl@{}} &&|\gamma_{n}((\boldsymbol{s},t), (\boldsymbol{s}^{\prime},t^{\prime})) - g(\boldsymbol{u}_{1},u_{2},\boldsymbol{s},t)| = D(\boldsymbol{s},t)h(\boldsymbol{u}_{1},u_{2})\sigma^{2}|D(\boldsymbol{s}^{\prime},t^{\prime}) - D(\boldsymbol{s},t)|\\ &&\leq D(\boldsymbol{s},t)h(\boldsymbol{u}_{1},u_{2})\sigma^{2} (\widetilde{C}_{1}\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\| + \widetilde{C}_{2}|t-t^{\prime}| ) = \mathcal{O}(\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\|+|t-t^{\prime}|) \end{array} $$

uniformly since D(s, t) is bounded on \(\mathcal {R}\times \mathcal {T}\) and |h(u1,u2)|≤ 1. Thus, (LS.1) is satisfied.

For g(s, t) defined in (LS.2), we have g(s, t) = g(0,0,s, t) = D(s, t)2σ2 + τ2. Note that \(\boldsymbol {s}^{\prime }=\boldsymbol {s} + \boldsymbol {u}_{1}/\varrho _{1,n}\) and \(t^{\prime } = t+u_{2}/\varrho _{2,n}\), and we have \(|g(\boldsymbol {s},t) - g(\boldsymbol {s}^{\prime },t^{\prime })| = |D(\boldsymbol {s},t)^{2}-D(\boldsymbol {s}^{\prime },t^{\prime })^{2}|\sigma ^{2} = |D(\boldsymbol {s},t)+D(\boldsymbol {s}^{\prime },t^{\prime })||D(\boldsymbol {s},t)-D(\boldsymbol {s}^{\prime },t^{\prime })|\sigma ^{2} \leq |D(\boldsymbol {s},t)+D(\boldsymbol {s}^{\prime },t^{\prime })| (\widetilde {C}_{1}\Vert \boldsymbol {s} - \boldsymbol {s}^{\prime }\Vert + \widetilde {C}_{2} |t - t^{\prime }|)\sigma ^{2}\). Thus, (LS.2) holds by adjusting the constants.

Further, we will show that the generalized spatio-temporal Matérn covariance function (1) satisfies (LS.3) and (LS.5). For all \((\boldsymbol {s},t), (\boldsymbol {s}^{\prime },t^{\prime }) \in \mathcal {R}\times \mathcal {T}\), we have

$$ \gamma_{n}((\boldsymbol{s},t),(\boldsymbol{s}^{\prime},t^{\prime}))\leq (\max D(\boldsymbol{s},t))^{2}(\sigma^{2} +\tau^{2})h(\boldsymbol{u}_{1},u_{2}). $$

Thus, to show (LS.3), it suffices to find γ0(∥u1∥) and γ1(|u2|) to bound h(u1,u2). Moreover, straightforward calculation yields that all first- and second-order partial derivatives of γn, denoted by γn, k and \(\gamma _{n,kk^{\prime }}\), can be bounded by the partial derivatives of h(u1,u2) up to some constant scales, which enables us to obtain γ2(∥u1∥) and γ3(|u2|) in (LS.5).

In addition, we have

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial h(\boldsymbol{u}_{1},u_{2})}{\partial \theta_{1}} = \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{\partial h(0,u_{2})}{\partial \theta_{1}}m^{\nu}K_{\nu}(m) - h(0,u_{2})m^{\nu}K_{\nu-1}(m)\frac{\partial m}{\partial \theta_{1}}\right) ,\\ &&\frac{\partial h(\boldsymbol{u}_{1},u_{2})}{\partial \theta_{2}} = -\frac{2^{1-\nu}}{\Gamma(\nu)} h(0,u_{2})m^{\nu}K_{\nu-1}(m)\frac{\partial m}{\partial \theta_{2}},\\ &&\frac{\partial h(\boldsymbol{u}_{1},u_{2})}{\partial \theta_{3}} = \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{\partial h(0,u_{2})}{\partial \theta_{3}}m^{\nu}K_{\nu}(m) - h(0,u_{2})m^{\nu}K_{\nu-1}(m)\frac{\partial m}{\partial \theta_{3}}\right), \end{array} $$

where m = m(u1,u2;𝜃) and

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})}{\partial \theta_{1}} = \frac{m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})\theta_{1}{u_{2}^{2}}(\theta_{3}-1)}{({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})({\theta_{1}^{2}}{u_{2}^{2}}+1)},\\ &&\frac{\partial m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})}{\partial \theta_{2}} = \frac{m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})}{\theta_{2}}, \frac{\partial m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})}{\partial \theta_{3}} = -\frac{m(\boldsymbol{u}_{1},u_{2};\boldsymbol{\theta})}{2({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})},\\ &&\frac{\partial h(0,u_{2})}{\partial \theta_{1}} = -\frac{\theta_{1}{u_{2}^{2}}(2\nu({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})+d({\theta_{1}^{2}}{u_{2}^{2}}+1))} {({\theta_{1}^{2}}{u_{2}^{2}}+1)({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})}h(0,u_{2}),\\ &&\frac{\partial h(0,u_{2})}{\partial \theta_{3}} = \frac{d\theta_{3}^{d/2-1}{\theta_{1}^{2}}{u_{2}^{2}}}{2({\theta_{1}^{2}}{u_{2}^{2}}+1)^{\nu}({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})^{d/2+1}} = \frac{d{\theta_{1}^{2}}{u_{2}^{2}}}{2\theta_{3}({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})}h(0,u_{2}). \end{array} $$

For (LS.3), it can be seen that \(m(\boldsymbol {u}_{1},u_{2};\boldsymbol {\theta }) \leq \max \limits \left \{\theta _{2} \theta _{3}^{-1/2},\theta _{2}\right \}\Vert \boldsymbol {u}_{1}\Vert \). Thus, we have

$$ h(\boldsymbol{u}_{1},u_{2})\leq \frac{ \theta_{3}^{d/2}2^{1-\nu}\widetilde{m}(\boldsymbol{u}_{1})^{\nu}K_{\nu}\left\{\widetilde{m}(\boldsymbol{u}_{1})\right\}}{({\theta_{1}^{2}}{u_{2}^{2}}+1)^{\nu}({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})^{d/2}{\Gamma}(\nu)}\leq 1, $$

where \(\widetilde {m}(\boldsymbol {u}_{1}) = \max \limits \left \{\theta _{2} \theta _{3}^{-1/2},\theta _{2}\right \}\Vert \boldsymbol {u}_{1}\Vert \). We can see that, up to some constant scales,

$$ h(\boldsymbol{u}_{1},u_{2})\leq \left( \widetilde{m}(\boldsymbol{u}_{1})^{\nu}K_{\nu}\left\{\widetilde{m}(\boldsymbol{u}_{1})\right\}\right)\left( |u_{2}|^{-2\nu-d}\right) \equiv \gamma_{0}(\Vert\boldsymbol{u}_{1}\Vert)\gamma_{1}(|u_{2}|) $$

Here, γ0(∥u1∥) is a linear combination of a polynomial of ∥u1∥ with degree ν and a modified Bessel function of the second kind and γ1(|u2|) is a polynomial of |u2| with degree − 2νd.

For (LS.5), we focus on the first-order partial derivatives in detail and omit details for the second-order partial derivatives, as similar arguments can be applied. Straightforward calculation shows that the (absolute value of) partial derivatives of h(u1,u2) can be bounded by products of two positive functions, \(\widetilde {\gamma }_{2}(\Vert \boldsymbol {u}_{1}\Vert )\) and \(\widetilde {\gamma }_{3}(|u_{2}|)\). Moreover, \(\widetilde {\gamma }_{2}(\Vert \boldsymbol {u}_{1}\Vert )\) is a linear combination of a polynomial of ∥u1∥ with degree at least ν and a modified Bessel function of the second kind, and \(\widetilde {\gamma }_{3}(|u_{2}|)\) is a polynomial of |u2| with degree at most − 2νd.

Since the partial derivatives of h(u1,u2) with respect to 𝜃 is continuous in ∥u1∥ and |u2|, it is bounded if ∥u1∥ and |u2| are bounded. To show (LS.3) and (LS.5), it suffices to show that, for k, l > 0, there exists M > 0 such that

  1. (i)

    \({\int \limits }_{M}^{\infty } u^{k}K_{l}(u)du<\infty \),

  2. (ii)

    ukKl(u) is bounded by a nonincreasing function on \((M,\infty )\).

Since d ≥ 1 and k > 0, u− 2kd is bounded on \((M,\infty )\) and \({\int \limits }_{M}^{\infty } u^{-2k-d}du=M^{-2k-d+1}/(2k+d-1) <\infty \). The last two conditions hold. By the property of Bessel function, \(K_{l}(u)\propto e^{-u}u^{-1/2}\{1+\mathcal {O}(1/u)\}\), as \(|u|\to \infty \). We can find M1,M2 such that Kl(u) ≤ M1euu− 1/2(1 + M2/u), when uM2. So (i) holds since

$$ \begin{array}{@{}rcl@{}} {\int}_{M_{2}}^{\infty} u^{k}K_{l}(u)du \leq &&{\int}_{M_{2}}^{\infty} M_{1}u^{k-1/2}e^{-u}(1+M_{2}/u)du\\ \leq && 2M_{1}{\int}_{M_{2}}^{\infty} u^{k-1/2}e^{-u}du < 2M_{1}{\Gamma}(k+1/2) < \infty. \end{array} $$

For (ii), we have ukKl(u) ≤ M1euuk− 1/2(1 + M2/u) ≤ 2M1euuk− 1/2, when uM2. Since euuk− 1/2 is decreasing on \((k-1/2,\infty )\), (ii) is satisfied. □

Appendix A.2: Generalized Exponential Spatio-temporal Covariance Function

In this section, we show that the following exponential spatio-temporal covariance function used in a simulation study satisfies conditions (LS.1)–(LS.5). The covariance function can be written as

$$ \begin{array}{@{}rcl@{}} \begin{array}{ll} &\gamma_{n}((\boldsymbol{s},t), (\boldsymbol{s}^{\prime},t^{\prime});\boldsymbol{\theta}) \\ =&\left\{ \begin{array}{ll} D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}, & \text{if}~\Vert \boldsymbol{u}_{1}\Vert>0~\text{or}~|u_{2}|> 0; \\ D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2} + \tau^{2}, & \text{otherwise}, \end{array} \right. \end{array} \end{array} $$

where 𝜃 = (cs,ct,σ2,τ2) is the vector of spatio-temporal parameters with the scaling parameter in space, cs ≥ 0, and the scaling parameter in time, ct ≥ 0. In addition, \(\boldsymbol {u}_{1} = \varrho _{1,n}(\boldsymbol {s}-\boldsymbol {s}^{\prime })\) is the spatial lag scaled to the spatially expanding domain, and \(u_{2} = \varrho _{2,n}(t-t^{\prime })\) is the temporal lag scaled to the temporally expanding domain, where ϱ1,n and ϱ2,n are positive constants. Further, D(s, t) is some fixed positive spatio-temporal function with D(0,0) = 1. Note that D(s, t)2σ2 + τ2 is the variance of Y (s, t).

By arguments similar to Section Appendix, we show (LS.1), (LS.2) and (LS.4). For (LS.3), we can see that, for all \((\boldsymbol {s},t), (\boldsymbol {s}^{\prime },t^{\prime }) \in \mathcal {R}\times \mathcal {T}\),

$$ \begin{array}{@{}rcl@{}} \gamma_{n}((\boldsymbol{s},t),(\boldsymbol{s}^{\prime},t^{\prime})) &\leq&\{\max D(\boldsymbol{s},t)\}^{2}(\sigma^{2} +\tau^{2})\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s}\} \exp\{- |u_{2}|/c_{t}\} \\&=& {\gamma}_{0}(\|\boldsymbol{u}_{1}\|){\gamma}_{1}(|u_{2}|). \end{array} $$

Here, both γ0(∥u1∥) and γ1(|u2|) are nonincreasing positive functions. Moreover, we have \({\int \limits }_{0}^{\infty } e^{-u/c_{s}} du = 1/c_{s} < \infty \) and \({\int \limits }_{0}^{\infty } e^{-u/c_{t}} du = 1/c_{t} < \infty \). Thus, (LS.3) is satisfied.

Further, we have

$$ \begin{array}{ll} &\partial\gamma_{n}/\partial\tau^{2} = 1_{\{\Vert\boldsymbol{u}_{1}\Vert=0, |u_{2}|=0\}},\\ &\partial\gamma_{n}/\partial\sigma^{2} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\},\\ &\partial \gamma_{n}/\partial c_{s} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}\Vert\boldsymbol{u}_{1}\Vert\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}/{c_{s}^{2}},\\ &\partial \gamma_{n}/\partial c_{t} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}|u_{2}|\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}/{c_{t}^{2}},\\ &\partial^{2}\gamma_{n}/\partial\sigma^{2}\partial c_{s} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\Vert\boldsymbol{u}_{1}\Vert\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}/{c_{s}^{2}},\\ &\partial^{2}\gamma_{n}/\partial\sigma^{2}\partial c_{t} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})|u_{2}|\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}/{c_{t}^{2}},\\ &\partial^{2} \gamma_{n}/\partial c_{s}\partial c_{t} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}\Vert\boldsymbol{u}_{1}\Vert|u_{2}|\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}/({c_{s}^{2}}{c_{t}^{2}}),\\ &\partial^{2} \gamma_{n}/\partial {c_{s}^{2}} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}\Vert\boldsymbol{u}_{1}\Vert\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}(\Vert\boldsymbol{u}_{1}\Vert/{c_{s}^{4}}-2/{c_{s}^{3}}),\\ &\partial^{2} \gamma_{n}/\partial {c_{t}^{2}} = D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}|u_{2}|\exp\{-\Vert\boldsymbol{u}_{1}\Vert/c_{s} - |u_{2}|/c_{t}\}(|u_{2}|/{c_{t}^{4}}-2/{c_{t}^{3}}). \end{array} $$

Here, all the first- and second-order partial derivatives are continuous in ∥u1∥ and |u2| and hence bounded when ∥u1∥ and |u2| are bounded. In addition, they are bounded by a product of two functions \(\widetilde {\gamma }_{2}(\Vert \boldsymbol {u}_{1}\Vert )\) and \(\widetilde {\gamma }_{3}(|u_{2}|)\), where \(\widetilde {\gamma }_{2}(u)\) and \(\widetilde {\gamma }_{3}(u)\) are products of a polynomial of u and an exponential function of u. (LS.5) is satisfied, since for k > 0, ukeu is nonincreasing on \([k,\infty )\), and \({\int \limits }_{k}^{\infty } u^{k}e^{-u}du<\infty \).

Appendix A.3: A Remark on Assumption (C.1)

In this section, we provide two sufficient conditions for (C.1). Further, we will demonstrate that, if 𝜃3 > 1, the generalized spatio-temporal Matérn covariance function (1) satisfies Assumption (C.1). The two sufficient conditions are stated as follows:

  1. (E.1)

    For 1 ≤ kq, \(|\gamma _{n,k}((\boldsymbol {s},t), (\boldsymbol {s}^{\prime },t^{\prime }))|\) satisfies one of the following two conditions: (i) |γn, k((s, t),(s, t))| > 0; (ii) For \(\|\boldsymbol {u}_{1}\|, |u_{2}| \in [M,\infty )\) for some constant M > 0 such that \((\boldsymbol {s},t), (\boldsymbol {s}+{\boldsymbol {u}_{1}}/{A_{n}},t+{u_{2}}/{B_{n}}) \in \mathcal {R}\times \mathcal {T}\), we have \(|\gamma _{n,k}((\boldsymbol {s},t), (\boldsymbol {s}+{\boldsymbol {u}_{1}}/{A_{n}},t+{u_{2}}/{B_{n}}))| \geq C_{3}\exp (-C_{4}\Vert \boldsymbol {u}_{1}\Vert - C_{5}|u_{2}|)\) for all n, where C3,C4,C5 > 0 are constants.

  2. (E.2)

    (i) For any two given positive constants M1, M2, there exist \(M_{1}^{\prime }\) and \(M_{2}^{\prime }\) with \(M_{1} < M_{1}^{\prime } < \infty \) and \(M_{2} < M_{2}^{\prime } < \infty \) such that \({\sum }_{i}{\sum }_{j} {1}(\Vert \boldsymbol {s}_{i} - \boldsymbol {s}_{j}\Vert \in [M_{1}\delta _{n},M_{1}^{\prime }\delta _{n}]){1}(|t_{i}-t_{j}| \in [M_{2}\zeta _{n},M_{2}^{\prime }\zeta _{n}]) \geq C_{6}N_{n}^{1/2+\iota _{1}}\) for some C6 > 0 and ι1 > 0. (ii) \(A_{n}\delta _{n} = \mathcal {O}(b_{n})\) and \(B_{n}\zeta _{n} = \mathcal {O}(b_{n})\), where \(b_{n} = \log \log N_{n}\).

To see the sufficiency of (E.1) and (E.2), we first note that if \(A_{n}\delta _{n} = \mathcal {O}(1)\) and \(B_{n}\zeta _{n} = \mathcal {O}(1)\), then \( \|{{~}^{n}\boldsymbol {\Gamma }}_{k}\|_{F}^{2} \geq CN_{n}^{1/2+\iota _{1}} \) for some C > 0. Thus, (C.1) is satisfied with ι = ι1. If \(A_{n}\delta _{n} \to \infty \) or \(B_{n}\zeta _{n} \to \infty \), by (E.1)–(E.2), we have \( \|{{~}^{n}\boldsymbol {\Gamma }}_{k}\|_{F}^{2} \geq CN_{n}^{1/2+\iota _{1}^{\prime }} \) for some C > 0 and any \(\iota _{1}^{\prime }\) such that \(0<\iota _{1}^{\prime }<\iota _{1}\), so (C.1) is satisfied with \(\iota = \iota _{1}^{\prime }\).

Next, we will show that the generalized spatio-temporal Matérn covariance function (1) satisfies (E.1), when 𝜃3 > 1. Since \(\left |\frac {\partial \gamma _{n}((\boldsymbol {s},t),(\boldsymbol {s},t))}{\partial \sigma ^{2}}\right | = D(\boldsymbol {s},t)^{2} > 0\) and \(\left |\frac {\partial \gamma _{n}((\boldsymbol {s},t),(\boldsymbol {s},t))}{\partial \tau ^{2}}\right | = 1\), γn/σ2 and γn/τ2 satisfy (E.1)(i).

Further, we show that γn/𝜃i satisfies (E.1)(ii) for i = 1,2,3. Recall that for all \((\boldsymbol {s},t), (\boldsymbol {s}+{\boldsymbol {u}_{1}}/{\varrho _{1,n}},t+{u_{2}}/{\varrho _{2,n}}) \in \mathcal {R}\times \mathcal {T}\) with ∥u1∥ > 0 or |u2| > 0, we have

$$ \begin{array}{@{}rcl@{}} \left|\frac{\partial \gamma_{n}}{\partial \theta_{1}}\right| &=& \frac{D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}2^{1-\nu}\theta_{1}\theta_{3}^{d/2}{u_{2}^{2}} }{\Gamma(\nu)({\theta_{1}^{2}}{u_{2}^{2}}+1)^{\nu+1}({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})^{d/2+1}}\left\{(\theta_{3}-1)m^{\nu+1}K_{\nu-1}(m)\right.\\ &&\left.+\left( 2\nu({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})+d({\theta_{1}^{2}}{u_{2}^{2}}+1)\right)m^{\nu}K_{\nu}(m) \right\} ,\\ \left|\frac{\partial \gamma_{n}}{\partial \theta_{2}}\right| &=& \frac{D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}2^{1-\nu}\theta_{3}^{d/2}\{m^{\nu+1}K_{\nu-1}(m)\}}{\Gamma(\nu)\theta_{2}({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})^{d/2}({\theta_{1}^{2}}{u_{2}^{2}}+1)^{\nu}} ,\\ \left|\frac{\partial \gamma_{n}}{\partial \theta_{3}}\right| &=\!& \frac{\!D(\boldsymbol{s},t)D(\boldsymbol{s}^{\prime},t^{\prime})\sigma^{2}2^{-\nu}\theta_{3}^{d/2-1}\{d\theta_{1}{u_{2}^{2}}m^{\nu}K_{\nu}(m) + \theta_{3}m^{\nu+1}K_{\nu-\!1}(m)\}}{\Gamma(\nu)({\theta_{1}^{2}}{u_{2}^{2}}+\theta_{3})^{d/2+1}({\theta_{1}^{2}}{u_{2}^{2}}+1)^{\nu}}. \end{array} $$

Up to some constant scale, we have

$$ \begin{array}{@{}rcl@{}} \left|\frac{\partial \gamma_{n}}{\partial \theta_{1}}\right| &\geq&|u_{2}|^{-2\nu-d-2}m^{\nu+1}K_{\nu-1}(m) + |u_{2}|^{-2\nu-d}m^{\nu}K_{\nu}(m)\\ &\geq&|u_{2}|^{-2\nu-d-2}\left( \theta_{2}\theta_{3}^{-1/2}\|\boldsymbol{u}_{1}\|\right)^{\nu+1}K_{\nu-1}(\theta_{2}\|\boldsymbol{u}_{1}\|) \\ &&+ |u_{2}|^{-2\nu-d}\left( \theta_{2}\theta_{3}^{-1/2}\|\boldsymbol{u}_{1}\|\right)^{\nu}K_{\nu}(\theta_{2}\|\boldsymbol{u}_{1}\|),\\ \left|\frac{\partial \gamma_{n}}{\partial \theta_{2}}\right| &\geq&|u_{2}|^{-2\nu-d}m^{\nu+1}K_{\nu-1}(m)\\ &\geq&|u_{2}|^{-2\nu-d}\left( \theta_{2}\theta_{3}^{-1/2}\|\boldsymbol{u}_{1}\|\right)^{\nu+1}K_{\nu-1}(\theta_{2}\|\boldsymbol{u}_{1}\|),\\ \left|\frac{\partial \gamma_{n}}{\partial \theta_{3}}\right| &\geq&|u_{2}|^{-2\nu-d-2}m^{\nu+1}K_{\nu-1}(m) + |u_{2}|^{-2\nu-d}m^{\nu}K_{\nu}(m)\\ &\geq&|u_{2}|^{-2\nu-d-2}\left( \theta_{2}\theta_{3}^{-1/2}\|\boldsymbol{u}_{1}\|\right)^{\nu+1}K_{\nu-1}(\theta_{2}\|\boldsymbol{u}_{1}\|)\\ && + |u_{2}|^{-2\nu-d}\left( \theta_{2}\theta_{3}^{-1/2}\|\boldsymbol{u}_{1}\|\right)^{\nu}K_{\nu}(\theta_{2}\|\boldsymbol{u}_{1}\|),\\ \end{array} $$

since \(\theta _{2}\theta _{3}^{-1/2}\|\boldsymbol {u}_{1}\|\leq m(\boldsymbol {u}_{1},u_{2};\boldsymbol {\theta })\leq \theta _{2}\|\boldsymbol {u}_{1}\|\). In addition, by property of Bessel function, \(K_{l}(u)\propto e^{-u}u^{-1/2}\{1+\mathcal {O}(1/u)\}\), as \(|u|\to \infty \). We can find M1,M2 such that Kl(u) ≥ M1euu− 1/2, when uM2; thus, (E.1)(ii) follows.

Remark 1.

It can be seen that the generalized exponential covariance function also satisfies (E.1). Note that \(\left |\frac {\partial \gamma _{n}((\boldsymbol {s},t),(\boldsymbol {s},t))}{\partial \sigma ^{2}}\right | = D(\boldsymbol {s},t)^{2} > 0\) and \(\left |\frac {\partial \gamma _{n}((\boldsymbol {s},t),(\boldsymbol {s},t))}{\partial \tau ^{2}}\right | = 1\), and (E.1)(i) holds. Next, γn/σ2, γn/cs and γn/ct are positive when ∥u1∥ > 2cs and |u2| > 2ct and can be written as linear combinations of products of \(|u_{2}|^{j}\exp (-a_{1}|u_{2}|)\) and \(\Vert \boldsymbol {u}_{1}\Vert ^{k} \exp (-a_{2}\Vert \boldsymbol {u}_{1}\Vert )\) for j, k ≥ 0 and some constants a1,a2 > 0. Hence, (E.1)(ii) follows.

Appendix A.4: Proof of Theorem 1

Proof.

To prove Theorem 1, it suffices to show that \(\|\boldsymbol {\Gamma }\|_{2}=\mathcal {O}(1)\), \(\|\boldsymbol {\Gamma }_{k}\|_{2} = \mathcal {O}(1)\) and \(\|\boldsymbol {\Gamma }_{kk^{\prime }}\|_{2} = \mathcal {O}(1)\), for all \(k,k^{\prime } = 1,\ldots , q\) (Mardia and Marshall, 1984). Note that \(\|\boldsymbol {A}\|_{2}\leq \|\boldsymbol {A}\|_{\infty }\) for any positive definite matrix A. We only need to show that \(\|\boldsymbol {\Gamma }\|_{\infty } = \mathcal {O}(1)\), \(\|\boldsymbol {\Gamma }_{k}\|_{\infty } = \mathcal {O}(1)\) and \(\|\boldsymbol {\Gamma }_{kk^{\prime }}\|_{\infty } = \mathcal {O}(1)\), for all \(k,k^{\prime } = 1,\ldots , q\).

For each i, let \(\mathcal {A}_{1,i}=\{j: \Vert \boldsymbol {s}_{i}-\boldsymbol {s}_{j}\Vert \leq C_{s,n}\}\) and \(\mathcal {A}_{2,i}=\{j: |t_{i}-t_{j}|\leq C_{t,n}\}\). Let a1 = Cs, n/δn, a2 = δnAn, b1 = Ct, n/ζn and b2 = ζnBn. Then,

$$ \begin{array}{@{}rcl@{}} \|\boldsymbol{\Gamma}\|_{\infty} &=& \max_{1\leq i\leq N_{n}}{\sum}_{j\in \mathcal{A}_{1,i}\cap\mathcal{A}_{2,i}}{\Gamma}_{ij} + \max_{1\leq i\leq N_{n}}{\sum}_{j\in \mathcal{A}_{1,i}^{c}\cap\mathcal{A}_{2,i}}{\Gamma}_{ij} \\ &&+ \max_{1\leq i\leq N_{n}}{\sum}_{j\in \mathcal{A}_{1,i}\cap\mathcal{A}_{2,i}^{c}}{\Gamma}_{ij} +\max_{1\leq i\leq N_{n}}{\sum}_{j\in \mathcal{A}_{1,i}^{c}\cap\mathcal{A}_{2,i}^{c}}{\Gamma}_{ij} \\ &=& (I_{1}) + (I_{2}) + (I_{3}) + (I_{4}), \end{array} $$

where Γij is the (i, j)th entry of Γ.

Denote \(\text {Card}(\mathcal {A})\) as the cardinality of the set \(\mathcal {A}\), then

$$ \begin{array}{@{}rcl@{}} (I_{1}) &\leq&\|\boldsymbol{\Gamma}\|_{\max} \cdot \text{Card}(\mathcal{A}_{1,i}\cap\mathcal{A}_{2,i}) \leq \mathcal{O}\left( \frac{C_{s,n}^{d}C_{t,n}}{{\delta_{n}^{d}}\zeta_{n}}\right) = \mathcal{O}({a_{1}^{d}}b_{1}),\\ (I_{2}) &\leq& \text{Card}(\mathcal{A}_{2,i}) {\sum}_{m=\lfloor\left( \frac{C_{s,n}A_{n}}{b}\right)\rfloor} \mathcal{O}\left( \frac{m^{d-1}b^{d}}{{\delta_{n}^{d}}{A_{n}^{d}}}\right) \max_{mb\leq\|\boldsymbol{u}_{1}\|\leq(m+1)b} \gamma_{0}(\|\boldsymbol{u}_{1}\|)\\ &\leq& \mathcal{O}\left( \frac{C_{t,n}}{\zeta_{n}{\delta_{n}^{d}}{A_{n}^{d}}}\right){\int}_{C_{s,n}A_{n}}^{\infty}u^{d-1}\gamma_{0}(u)du = \mathcal{O}(b_{1}/{a_{2}^{d}}){\int}_{a_{1}a_{2}}^{\infty} u^{d-1}\gamma_{0}(u)du,\\ (I_{3}) &\leq& \text{Card}(\mathcal{A}_{1,i}) {\sum}_{m=\lfloor\left( \frac{C_{t,n}B_{n}}{b}\right)\rfloor} \mathcal{O}\left( \frac{b}{\zeta_{n}B_{n}}\right) \max_{mb\leq|u_{2}|\leq(m+1)b} \gamma_{1}(|u_{2}|)\\ &\leq& \mathcal{O}\left( \frac{C_{s,n}^{d}}{{\delta_{n}^{d}}\zeta_{n}B_{n}}\right){\int}_{C_{t,n}B_{n}}^{\infty}\gamma_{1}(u)du=\mathcal{O}({a_{1}^{d}}/b_{2}){\int}_{b_{1}b_{2}}^{\infty} \gamma_{1}(u)du, \end{array} $$
$$ \begin{array}{@{}rcl@{}} (I_{4}) &\leq& {\sum}_{m=\lfloor\left( \frac{C_{s,n}A_{n}}{b}\right)\rfloor} \mathcal{O}\left( \frac{m^{d-1}b^{d}}{{\delta_{n}^{d}}{A_{n}^{d}}}\right) \max_{mb\leq\|\boldsymbol{u}_{1}\|\leq(m+1)b} \gamma_{0}(\|\boldsymbol{u}_{1}\|)\times\\ && {\sum}_{m^{\prime}=\lfloor\left( \frac{C_{t,n}B_{n}}{b}\right)\rfloor} \mathcal{O}\left( \frac{b}{\zeta_{n}B_{n}}\right) \max_{m^{\prime}b\leq|u_{2}|\leq(m^{\prime}+1)b} \gamma_{1}(|u_{2}|)\\ &\leq& \mathcal{O}\left( \frac{1}{\zeta_{n}B_{n}{\delta_{n}^{d}}{A_{n}^{d}}}\right){\int}_{C_{s,n}A_{n}}^{\infty}u\gamma_{0}(u)du{\int}_{C_{t,n}B_{n}}^{\infty}\gamma_{1}(u)du\\ &=& \mathcal{O}(1/{a_{2}^{d}}b_{2}){\int}_{a_{1}a_{2}}^{\infty} u^{d-1}\gamma_{0}(u)du{\int}_{b_{1}b_{2}}^{\infty} \gamma_{1}(u)du. \end{array} $$

To show \(\Vert \boldsymbol {\Gamma } \Vert _{\infty }= \mathcal {O}(1)\), it suffices to show that

  1. (i)

    \({a_{1}^{d}}b_{1}\in [C_{1},C_{2}]\) for some constants C1,C2 > 0,

  2. (ii)

    \(\mathcal {O}(1/{a_{1}^{d}}{a_{2}^{d}}){\int \limits }_{a_{1}a_{2}}^{\infty } u^{d-1}\gamma _{0}(u)du = \mathcal {O}(1)\),

  3. (iii)

    \(\mathcal {O}(1/b_{1}b_{2}) {\int \limits }_{b_{1}b_{2}}^{\infty } \gamma _{1}(u)du = \mathcal {O}(1)\).

Let Cs, n = 1/An and Ct, n = 1/Bn. By (A.3), \({a_{1}^{d}}b_{1} = ({\delta _{n}^{d}}{A_{n}^{d}}\zeta _{n}B_{n})^{-1} \leq c_{3}^{-1} = \mathcal {O}(1)\), the above requirements are fulfilled. By (LS.5),

$$ \max\{|\gamma_{n,k}((\boldsymbol{s},t),(\boldsymbol{s}^{\prime},t^{\prime}); \boldsymbol{\theta})|,|\gamma_{n,kk^{\prime}}((\boldsymbol{s},t),(\boldsymbol{s}^{\prime},t^{\prime}); \boldsymbol{\theta})|\} \leq \gamma_{2}(0)\gamma_{3}(0), $$

uniformly for all n and \(1< k,k^{\prime } < q\). Thus, we have \(\|\boldsymbol {\Gamma }\|_{2} = \mathcal {O}(1)\), and similar arguments can be applied to show that \(\|\boldsymbol {\Gamma }_{k}\|_{2} = \mathcal {O}(1)\) and \(\|\boldsymbol {\Gamma }_{kk^{\prime }}\|_{2}= \mathcal {O}(1)\).

Together with (C.1)–(C.3) and by Theorem 1 of Sweeting (1980), we have the result of Theorem 1. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, T., Liu, J., Zhu, J. et al. Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes. Sankhya A 84, 689–713 (2022). https://doi.org/10.1007/s13171-020-00213-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-020-00213-4

Keywords

AMS (2000) subject classification

Navigation