Skip to main content
Log in

Antioxidant activities of tamarind (Tamarindus Indica) seed coat extracts using in vitro and in vivo models

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Tamarindus indica seed coat was extracted with methanol, acetone and water and screened for DPPH radical scavenging activities. Methanol extract showed higher activity than other extracts. Treatment of albino rats (Wistar strain) with CCl4 at 1.25 mL/kg of body weight decreased superoxide dismutase (55 %), catalase (73 %) and peroxidase (78 %), while lipid peroxidation increased nearly 2.5 fold in liver. Pretreatment of rats with methanol extract of T. Indica seed coat (TSCE) at 50 mg/kg (as tannic acid equivalents) followed by CCl4 treatment, caused restoration of superoxide dismutase, catalase and lipid peroxidation to values close to control while peroxidase was restored to 67 % of the control. Histopathological studies of liver of different groups supported the protective effects of TSCE by restoring the hepatic architecture. These studies could be further extended to exploit its possible application for the preservation of food products as well as a health supplement and neutraceutical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdille MH, Singh RP, Jayaprakasha GK, Jena BS (2005) Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem 90:891–896

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–125

    Article  CAS  Google Scholar 

  • Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem 32:671–683

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gel. Anal Biochem 10:276–287

    Article  Google Scholar 

  • Bombardelli E, Morazzoni P (1995) Vitis Vinifera L. Fitoterapia 65:291–317

    Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Elmastaşa M, Gülçinb İ, Işildaka Ö, Küfrevioğlub Öİ, İbaoğlua K, Aboul-Eneinc HY (2006) Radical scavenging activity and antioxidant capacity of bay leaf extracts. J Iranian Chem Soc 3(3):258–266

    Article  Google Scholar 

  • Fook JMSLL, Macedo LLP, Moura GEDD, Teixeira FM, Oliveira AS, Queiroz AFS, Sales MP (2005) A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. J Life Sci 76:2881–2891

    Article  CAS  Google Scholar 

  • Ghelardi E, Tavanti A, Davini P, Celandroni F, Salvetti S, Parisio E, Boldrini E, Senesi S, Campa M (2004) A mucoadhesive polymer extracted from tamarind seed improves the intraocular penetration and efficacy of Rufloxacin in topical treatment of experimental Bacterial Keratitis. J Antimicrobial Agents Chemotherapy 48:3396–3401

    Article  CAS  Google Scholar 

  • Gordon MH (1990) The mechanism of antioxidant action in vitro. In: Hudson BJF (ed) Food antioxidants. Elsevier Applied Science, London, pp 1–18

    Chapter  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8:89–193

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) In free radicals in biology and medicine, 2nd edn. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Halliwell B, Gutteridge JMC, Aruoma OI (1987) The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reaction of hydroxyl groups. Anal Biochem 165:215–219

    Article  CAS  Google Scholar 

  • Jayaprakasha GK, Singh RP, Sakariah KK (2001) Antioxidant activity of grape seed (Vitis Vinefera) extracts on peroxidation models in vitro. Food Chem 73:285–290

    Article  CAS  Google Scholar 

  • Lin CC, Lee HY, Chang CH, Namba T, Hattori M (1996) Evaluation of the liver protective principles from the root of Cudrania cochinchinensis var. gerontogea. Phytotherapy Res 10:13–17

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AI, Randall JL (1951) Protein measurement with Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luengthanaphol S, Mongkholkhajornsilp D, Douglas S, Douglas PL, Pengsopa L, Pongamphai S (2004) Extraction of antioxidants from sweet Thai tamarind seed coat: Preliminary experiments. J Food Engg 63(3):247–252

    Article  Google Scholar 

  • Maiti R, Jane D, Das UK, Ghosh D (2004) Antidibetic effect of aqueous extract of seed of Tamarindus indica L. in Streptozotocin-induced diabetic rats. J Ethnopharmacol 92(1):85–91

    Article  CAS  Google Scholar 

  • Mohd Yusof Bin M, Haris BA, Dinie NB (2012) Tamarind seed extract enhances epidermal wound healing. Int J Biol 4(1):81–88

    Google Scholar 

  • Murthy KNC, Singh RP, Jayaprakasha GK (2002) Antioxidant activity of grape (Vitis vinifera) pomace extract. J Agri Food Chem 50:5909–5914

    Article  CAS  Google Scholar 

  • Nicholos MA (1962) A spectrophotometric assay for iodide oxidation by thyroid peroxidase. Anal Biochem 4:311–345

    Google Scholar 

  • Pin DD, Yen GC (1997) Antioxidant activity of three herbal waxes extracts. Food Chem 60(4):639–645

    Article  Google Scholar 

  • Rolando M, Valente C (2007) Establishing the tolerability & performace of Tamarind Seed Polysacharide (TSP) in treating dry eye syndrome: Result of Clinical Study, BMC Opthalmol

  • Singh RP, Chidamabara Murthy KN, Jayaprakasha GK (2002) Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agri Food Chem 50:81–86

    Article  CAS  Google Scholar 

  • Sreelekha TT, Vijayakumar T, Ankanthil R, Vijayan KK, Nair MK (1993) Immunomodulatory effect of a polysaccharide from Tamarindus Indica. Anticancer Drugs 4(2):209–212

    Article  CAS  Google Scholar 

  • Tapsel LC, Hemphill I, Cobiac L (2006) Role of herbs and spices: the past, the present, the future. Med J Aus 185(4):4–24

    Google Scholar 

  • Ushanandini S, Nagaraju S, Harish Kumar K, Vedavathi M, Machiah DK, Kemparaju K, Vishwanath BS, Gowda TV, Girish KS (2006) The anti-snake venom properties of Tamarindus indica (Leguminiceae) seed extract. Phytotherapy Res 20(10):851–858

    Article  CAS  Google Scholar 

  • Yamaguchi F, Ariga T, Yoshimira Y, Nakazawa H (2000) Antioxidant and anti-glycation of garcinol from Garcinia indica fruit rind. J Agri Food Chem 48:180–185

    Article  CAS  Google Scholar 

  • Yen GC, Pin DD, Chuang DY (2000) Antioxidant activity of anthraquinones and anthrone. Food Chem 70:307–315

    Article  Google Scholar 

  • Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agri Food Chem 49(8):4083–4089

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Heads, Human Resource Development and Biochemistry and Nutrition Departments and Director, CSIR-CFTRI for their help and encouragement during the course of work and preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandesh, P., Velu, V. & Singh, R.P. Antioxidant activities of tamarind (Tamarindus Indica) seed coat extracts using in vitro and in vivo models. J Food Sci Technol 51, 1965–1973 (2014). https://doi.org/10.1007/s13197-013-1210-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-013-1210-9

Keywords

Navigation