Skip to main content
Log in

Novel species of parasitic green microalgae Coccomyxa veronica sp. nov. infects Anadara broughtonii from the Sea of Japan

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

A new parasitic microalga has been discovered in the commercial bivalve Anadara broughtonii from the Peter the Great Bay of the Sea of Japan. Infected molluscs had an abnormal shell that was more rounded and had a pale orange-green body coloration. Microalgae can be found in all organs of Anadara, depending on the degree of invasion. However, the main places of their localization were the mantle, the hindgut, and the gills, which had the greatest histopathological abnormalities. In haemolymph detection of parasites was extremely rare and only in the amoebocytes. Morphological observations of cultures of this microalga using light and transmission electronic microscopy, and phylogenetic analyses, carried out using 18S rDNA and ITS1 loci, revealed that green alga from Anadara is a new species of the genus Coccomyxa, described here as Coccomyxa veronica sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambariyanto A (2002) Calculating the contribution of zooxanthellae to giant clams respiration energy requirements. J Coast Dev 5:101–110

    Google Scholar 

  • Ambariyanto A, Hoegh-Guldberg O (1997) Effect of nutrient enrichment in the field on the biomass, growth and calcification of the giant clam Tridacna maxima. Mar Biol 29:635–642

    Google Scholar 

  • Bala LO (1995) Especificidad y prevalencia de la endobiosis de Coccomyxa parasitica (Chlorophyta: Chlorococcales) en Mytilus edulis platensis (Mollusca: Bivalvia). Nat Patag Cienc Biol 3:1–9

    Google Scholar 

  • Belda-Baillie CA, Leggat W, Yellowlees D (1998) Growth and metabolic responses of the giant clam-zooxanthellae symbiosis in a reef-fertilisation experiment. Mar Ecol Prog Ser 170:131–141. https://doi.org/10.3354/meps170131

    Article  CAS  Google Scholar 

  • Belda CA, Lucas JS, Yellowlees D (1993) Nutrient limitation in the giant clam-zooxanthellae symbiosis: effects of nutrient supplements on growth of the symbiotic partners. Mar Biol 117:655–664

    Article  Google Scholar 

  • Boraso AL, Zaixso H (1978) Coccomyxa parasitica endozoic in Mytilus edulis. Physis Secc A 38:131–136

    Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34. https://doi.org/10.1016/j.protis.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  • Cooke WJ (1975) The occurrence of an endozoic green alga in the marine mollusc, Clinocardium nuttallii (Conrad, 1837). Phycologia 14:35–39. https://doi.org/10.2216/i0031-8884-14-1-35.1

    Article  Google Scholar 

  • Crespo C, Rodríguez H, Segade P et al (2009) Coccomyxa sp. (Chlorophyta: Chlorococcales), a new pathogen in mussels (Mytilus galloprovincialis) of Vigo estuary (Galicia, NW Spain). J Invertebr Pathol 102:214–219. https://doi.org/10.1016/j.jip.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  • Darienko T, Gustavs L, Eggert A et al (2015) Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS One 10:e0127838. https://doi.org/10.1371/journal.pone.0127838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabaev D, Olifirenko A (2007) Conditions of settlings formation of bivalves Anadara broughtoni in Peter the Great Bay (Japan Sea). Izv TINRO 149:122–137

    Google Scholar 

  • Galysheva YA, Khristoforova NK (2007) Environments and macrobenthos in the Vostok Bay (Japan Sea) in conditions of anthropogenic impact. Izv TINRO 149:270–309

    Google Scholar 

  • Goetsch W, Scheuring L (1926) Parasitismus und symbiose der algengattung chlorella. Morph u Okol Tiere 7:220–253. https://doi.org/10.1007/BF00540722

    Article  Google Scholar 

  • Gontier N, Pombo O (2015) Reticulate evolution: symbiogenesis, lateral gene transfer, hybridization and infectious heredity (interdisciplinary evolution research). Springer, Lisbon

    Book  Google Scholar 

  • Gostyukhina OL, Andreenko TI (2020) Enzymatic and low-molecular weight parts of antioxidant complex in two species of Black Sea mollusks with different resistance to oxidative stress: Mytilus galloprovincialis Lam. and Anadara kagoshimensis (Tokunaga, 1906). Biol Bull Rev 10:38–47. https://doi.org/10.1134/s2079086420010041

    Article  Google Scholar 

  • Gray AP, Lucas IAN, Seed R, Richardson CA (1999) Mytilus edulis chilensis infested with Coccomyxa parasitica (Chlorococcales, Coccomyxaceae). J Molluscan Stud 65:289–294. https://doi.org/10.1093/mollus/65.3.289

    Article  Google Scholar 

  • Guillard RL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Cran Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hartman MC, Pratt I (1976) Infection of the heart cockle, Clinocardium nuttallii, from Yaquina Bay, Oregon, with an endosymbiotic alga. J Invertebr Pathol 28:291–299

    Article  Google Scholar 

  • Hinde R (1987) Symbioses between aquatic invertebrates and algae. Int J Parasitol 17:383–390. https://doi.org/10.1016/0020-7519(87)90113-5

    Article  Google Scholar 

  • Holt AL, Vahidinia S, Gagnon YL, et al (2014) Photosymbiotic giant clams are transformers of solar flux. J R Soc Interface 11. https://doi.org/10.1098/rsif.2014.0678

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  • Jantzen C, Wild C, El-Zibdah M et al (2008) Photosynthetic performance of giant clams, Tridacna maxima and T. squamosa. Red Sea Mar Biol 155:211–221. https://doi.org/10.1007/s00227-008-1019-7

    Article  Google Scholar 

  • Jones DS, Jacobs DK (1992) Photosymbiosis in Clinocardium nuttalli: implications for tests of photosymbiosis in fossil molluscs. Palaios 7:86–95. https://doi.org/10.2307/3514798

    Article  Google Scholar 

  • Kirkendale L (2009) Their day in the sun: molecular phylogenetics and origin of photosymbiosis in the “other” group of photosymbiotic marine bivalves (Cardiidae: Fraginae). Biol J Linn Soc 97:448–465. https://doi.org/10.1111/j.1095-8312.2009.01215.x

    Article  Google Scholar 

  • Krapivin V (2012) Symbionts of Mytilus edulis in the littoral and sublittoral zones of the Kandalaksha and Onega Gulfs of the White Sea. Parazitologiia 46:203–225

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumeiko VV, Sokolnikova YN, Grinchenko AV et al (2018) Immune state correlates with histopathological level and reveals molluscan health in populations of Modiolus kurilensis by integral health index (IHI). J Invertebr Pathol 154:42–57. https://doi.org/10.1016/j.jip.2018.03.014

    Article  PubMed  Google Scholar 

  • Kvitko K, Andreyeva V, Kirsanova J, Maximovich N, Tichonova L, Migunova A, Minichev J (1995) Green algae Choricystis (Skuja) Fott - a parasite of the White sea mussel (Mytilus edulis L.). Abstracts of the nature conditions of the Kara and Barents seas, proceedings of the Russian-Norwegian Workshop-95, St. Petersburg, Russia, pp 395–399 

  • Leibovitz L, Schott EF, Karney RC (1984) Diseases of wild, captive and cultured scallops. J World Maric Soc 15:269–283. https://doi.org/10.1111/j.1749-7345.1984.tb00162.x

    Article  Google Scholar 

  • Lemoine F, Correia D, Lefort V et al (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47:W260–W265. https://doi.org/10.1093/nar/gkz303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutaenko KA, Noseworthy RG (2012) Catalogue of the living bivalvia of the continental coast of the Sea of Japan (East sea). Dalnauka, Vladivostok, p 247

  • Malavasi V, Škaloud P, Rindi F, et al (2016) DNA-based taxonomy in ecologically versatile microalgae: a re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS One 11. https://doi.org/10.1371/journal.pone.0151137

  • Meixner R (1984) On a microalgal infection of Mytilus edulis. Abstracts of the international council for the exploration of the sea, annual science conference (ICES), council meeting papers, Copenhagen, Denmark. 1984/K:30, p 3

  • Morsán E, Ciocco NF (2004) Age and growth model for the southern geoduck, Panopea abbreviata, off Puerto Lobos (Patagonia, Argentina). Fish Res 69:343–348. https://doi.org/10.1016/j.fishres.2004.06.012

    Article  Google Scholar 

  • Mortensen S, Harkestad LS, Stene R, Renault T (2005) Picoeucaryot alga infecting blue mussel Mytilus edulis in southern Norway. Dis Aquat Org 63:25–32

    Article  Google Scholar 

  • Morton B (1982) The biology, functional morphology and taxonomic status of Fluviolanatus subtorta (Bivalvia: Trapeziidae), a heteromyarian bivalve possessing “zooxanthellae“. J Malacol Soc Aust 5:113–140. https://doi.org/10.1080/00852988.1982.10673945

    Article  Google Scholar 

  • Naidu KS, South GR (1970) Occurrence of an endozoic alga in the giant scallop Placopecten magellanicus (Gmelin). Can J Zool 48:183–185

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution andphylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Prats Soler C (2008) Individual-based Modelling of bacterial cultures in the study of the lag phase. Journal of Theoretical Biology 241(4):939–53. https://doi.org/10.1016/j.jtbi.2006.01.029

  • Rodríguez F, Feist SW, Guillou L et al (2008) Phylogenetic and morphological characterisation of the green algae infesting blue mussel Mytilus edulis in the North and South Atlantic oceans. Dis Aquat Org 81:231–240. https://doi.org/10.3354/dao01956

    Article  CAS  Google Scholar 

  • Schneider JA, Carter JG (2001) Evolution and phylogenetic significance of cardioidean shell microstructure (Mollusca, Bivalvia). J Paleontol 75:607–643. https://doi.org/10.1666/0022-3360(2001)075%3c0607:EAPSOC%3e2.0.CO;2

    Article  Google Scholar 

  • Sokolnikova Y, Magarlamov T, Stenkova A, Kumeiko V (2016) Permanent culture and parasitic impact of the microalga Coccomyxa parasitica, isolated from horse mussel Modiolus kurilensis. J Invertebr Pathol 140. https://doi.org/10.1016/j.jip.2016.07.012

  • Stevenson RN, South GR (1974) Coccomyxa parasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfoundland. Br Phycol J 9:319–329. https://doi.org/10.1080/00071617400650391

    Article  Google Scholar 

  • Syasina IG, Kukhlevsky AD, Kovaleva AL, Vaschenko MA (2012) Phylogenetic and morphological characterization of the green alga infesting the horse mussel Modiolus modiolus from Vityaz Bay (Peter the Great Bay, Sea of Japan). J Invertebr Pathol 111:175–181. https://doi.org/10.1016/j.jip.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  • Tabakova EV, Magarlamov TY, Rybalkina SM, Kumeiko VV (2008) Morpho-functional description of cell types of hemolymph of marine bivalve Anadara broughtonii. Abstracts of the 1st International Congress on Invertebrate Morphology (ICIM-1). Journal of Morphology, Copenhagen, Denmark 269(12):1473 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci 101:11030–11035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaschenko MA, Kovaleva AL, Syasina IG, Kukhlevsky AD (2013) Reproduction-related effects of green alga Coccomyxa sp. infestation in the horse mussel Modiolus modiolus. J Invertebr Pathol 113:86–95. https://doi.org/10.1016/j.jip.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  • Vázquez N, Rodríguez F, Ituarte C et al (2010) Host-parasite relationship of the geoduck Panopea abbreviata and the green alga Coccomyxa parasitica in the Argentinean Patagonian coast. J Invertebr Pathol 105:254–260. https://doi.org/10.1016/j.jip.2010.07.005

    Article  PubMed  Google Scholar 

  • Vermeersch L, Perez-Samper G, Cerulus B et al (2019) On the duration of the microbial lag phase. Curr Genet 65:721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeij GJ (2013) The evolution of molluscan photosymbioses: a critical appraisal. Biol J Linn Soc 109:497–511

    Article  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zuykov M, Tanaka K, et al (2019) New insight into light-enhanced calcification in mytilid mussels, Mytilus sp., infected with photosynthetic algae Coccomyxa sp.: δ13C value and metabolic carbon record in shells. J Exp Mar Bio Ecol 520. https://doi.org/10.1016/j.jembe.2019.151211

  • Zuykov M, Belzile C, Lemaire N et al (2014) First record of the green microalgae Coccomyxa sp. in blue mussel Mytilus edulis (L.) from the Lower St. Lawrence Estuary (Québec, Canada). J Invertebr Pathol 120:23–32. https://doi.org/10.1016/j.jip.2014.05.001

    Article  PubMed  Google Scholar 

  • Zuykov M, Anderson J, Archambault P et al (2018a) Mytilus trossulus and hybrid (M. edulis-M. trossulus) - new hosts organisms for pathogenic microalgae Coccomyxa sp. from the Estuary and northwestern Gulf of St. Lawrence, Canada. J Invertebr Pathol 153:145–146. https://doi.org/10.1016/j.jip.2018.02.017

    Article  PubMed  Google Scholar 

  • Zuykov M, Anderson J, Pelletier E (2018b) Does photosynthesis provoke formation of shell deformity in wild mytilid mussels infested with green microalgae Coccomyxa? – A conceptual model and research agenda. J Exp Mar Biol Ecol 505:9–11. https://doi.org/10.1016/j.jembe.2018.04.003

    Article  Google Scholar 

  • Zuykov M, Allam B, Gosselin M, et al (2020a) First report of signs of infection by Coccomyxa-like algae in wild blue mussels, Mytilus spp., in the Gulf of Maine (USA, Maine). J Fish Dis 1–4. https://doi.org/10.1111/jfd.13172

  • Zuykov M, Kolyuchkina G, Archambault P, et al (2020b) Shell deformity as a marker for retrospective detection of a pathogenic unicellular alga, Coccomyxa sp., in mytilid mussels: A first case study and research agenda. J Invertebr Pathol 169:107311. https://doi.org/10.1016/j.jip.2019.107311

  • Zuykov M, Anderson J, Kolyuchkina G et al (2021a) New three-way symbiosis: an eukaryotic alga, a blue mussel, and an endolithic cyanobacteria. Symbiosis 84:163–169. https://doi.org/10.1007/s13199-021-00777-1/Published

    Article  CAS  Google Scholar 

  • Zuykov M, Kolyuchkina G, Spiers G, et al (2021b) Pre-exposure to Cu2+ and CuO NPs leads to infection of caged blue mussels, Mytilus edulis L., by pathogenic microalga: Pilot study in the Lower St. Lawrence Estuary (Québec, Canada). Mar Pollut Bull 166:112180. https://doi.org/10.1016/j.marpolbul.2021b.112180

Download references

Acknowledgements

The authors are grateful for the opportunity of bivalves collection and screening that were carried out at the Vostok Marine Biological Station (121082600038-3) and the CKP «Primorsky aquarium», A.V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS (Vladivostok, Russia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Sokolnikova.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Human and Animal Rights and Informed Consent

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Formulation of research goals and aims, coordination responsibility for the research activity execution, data collection and analysis were performed by Yulia Sokolnikova; material preparation were performed by Ayna Tumas; molecular and phylogenetic analysis were performed by Anna Stenkova and Ekaterina Smagina; ultrastructural analysis were performed by Timur Magarlamov and Veronika Slatvinskaya. The first draft of the manuscript was written by Yulia Sokolnikova and all authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolnikova, Y., Tumas, A., Stenkova, A. et al. Novel species of parasitic green microalgae Coccomyxa veronica sp. nov. infects Anadara broughtonii from the Sea of Japan. Symbiosis 87, 293–305 (2022). https://doi.org/10.1007/s13199-022-00877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-022-00877-6

Keywords

Navigation