Skip to main content
Log in

Integrated network pharmacology approach shows a potential role of Ginseng catechins and ginsenosides in modulating protein aggregation in Amyotrophic Lateral Sclerosis

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Amyotrophic lateral Sclerosis is an incurable, progressive neurodegenerative motor neuron disease. The disease is characterized by protein aggregates. The symptoms include weakness, denervation of muscles, atrophy and progressive paralysis of bulbar and respiratory muscles and dysphagia. Various secondary metabolites are evaluated for their ability to improve symptoms in ALS. Ginseng has been traditionally used for treating several neurodegenerative diseases. Several studies using model systems have shown a potential role of Ginseng catechins and Ginsenosides in clearing protein aggregation associated with ALS. We focus on Network pharmacology approach to understand the effect of Ginseng catechins or ginsenosides on protein aggregation associated with ALS. A catechin/ginsenoside-protein interaction network was generated and the pathways obtained were compared with those obtained from transcriptomic datasets of ALS from GEO database. Knock out of MAPK14, AKT and GSK from Catechin and BACE 1 from ginsenoside modulated pathways inhibited protein aggregation. Catechins and ginsenosides have potential as therapeutic agents in the management of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

GEO:

Gene expression omnibus

MAPK14:

Mitogen-activated protein kinase 14

GSK:

Glycogen synthase kinase

BACE1:

Beta-secretase 1

SNP:

Single nucleotide polymorphism

SOD1:

Super oxide dismutase 1

C9orf72:

Chromosome 9 open reading frame 72

FUS:

Fused in sarcoma

TDP-43:

Tar DNA binding protein 43

HAT:

Histone acetyltransferase

HADC:

Histone deacetylases

HD:

Huntington’s disease

PD:

Parkinson’s disease

DMSO:

Dimethyl sulfoxide

GREIN:

GEO RNA-seq experiments interactive navigator

GSEA:

Gene set enrichment analysis

STITCH:

Search tool for interactions of chemicals

E-YFP:

Enhanced yellow florescent protein

URA-YNB:

Uracil–yeast nitrogen base

References

  • Abdel-Khalik J, Yutuc E, Crick PJ et al (2017) Defective cholesterol metabolism in amyotrophic lateral sclerosis. J Lipid Res 58:267–278. https://doi.org/10.1194/jlr.P071639

    Article  CAS  PubMed  Google Scholar 

  • Al Mahi N, Najafabadi MF, Pilarczyk M et al (2019) GREIN: an interactive web platform for re-analyzing GEO RNA-seq data. Sci Rep 9:1–9

    Google Scholar 

  • Alam J, Scheper W (2016) Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain. Autophagy 12:2516–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Chalabi A, Van Den Berg LH, Veldink J (2017) Gene discovery in amyotrophic lateral sclerosis: Implications for clinical management. Nat Rev Neurol 13:96–104. https://doi.org/10.1038/nrneurol.2016.182

    Article  CAS  PubMed  Google Scholar 

  • Ayaz M, Sadiq A, Junaid M et al (2019) Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci 11:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin KR, Godena VK, Hewitt VL, Whitworth AJ (2016) Axonal transport defects are a common phenotype in Drosophila models of ALS. Hum Mol Genet 25:2378–2392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bendotti C, Atzori C, Piva R et al (2004) Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 63:113–119

    Article  CAS  PubMed  Google Scholar 

  • Bernardini C, Censi F, Lattanzi W et al (2013) Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0057739

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco H, Corcia P, Pradat PF et al (2013) Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: An untargeted approach via high-resolution mass spectrometry. J Proteome Res 12:3746–3754. https://doi.org/10.1021/pr400376e

    Article  CAS  PubMed  Google Scholar 

  • Blasco H, Patin F, Madji Hounoum B et al (2016) Metabolomics in amyotrophic lateral sclerosis: How far can it take us? Eur J Neurol 23:447–454. https://doi.org/10.1111/ene.12956

    Article  CAS  PubMed  Google Scholar 

  • Bournival J, Quessy P, Martinoli M-G (2009) Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 29:1169–1180

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR (1996) Natural history of ALS: symptoms, strength, pulmonary function, and disability. Neurology 47:71S-82S

    Article  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590. https://doi.org/10.1038/nrd2605

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M et al (2016) The “Omics” of Amyotrophic Lateral Sclerosis. Trends Mol Med 22:53–67. https://doi.org/10.1016/j.molmed.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Yang EJ (2016) Ginsenoside Re attenuates neuroinflammation in a symptomatic ALS animal model. Am J Chin Med 44:401–413

    Article  CAS  PubMed  Google Scholar 

  • Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:1–14

    Article  Google Scholar 

  • Choi H-J, Cha SJ, Lee J-W et al (2020) Recent advances on the role of gsk3β in the pathogenesis of amyotrophic lateral sclerosis. Brain Sci 10:675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H-J, Lee JY, Cha SJ et al (2022) FUS-induced neurotoxicity is prevented by inhibiting GSK-3β in a Drosophila model of amyotrophic lateral sclerosis. Hum Mol Genet 31:850–862

    Article  CAS  PubMed  Google Scholar 

  • Chutna O, Gonçalves S, Villar-Piqué A et al (2014) The small GTPase Rab11 co-localizes with α-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Hum Mol Genet 23:6732–6745

    Article  CAS  PubMed  Google Scholar 

  • Clarke DJB, Kuleshov MV, Schilder BM et al (2018) eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks. Nucleic Acids Res 46:W171–W179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough E, Barrett T (2016) The gene expression omnibus database. Statistical genomics. Springer, Cham, pp 93–110

    Chapter  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:S25–S30

    Article  Google Scholar 

  • Dewil M, dela Cruz VF, Van Den Bosch L, Robberecht W (2007) Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1G93A-induced motor neuron death. Neurobiol Dis 26:332–341

    Article  CAS  PubMed  Google Scholar 

  • Duda P, Wiśniewski J, Wójtowicz T et al (2018) Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets 22:833–848

    Article  CAS  PubMed  Google Scholar 

  • Dutta K, Patel P, Rahimian R, Phaneuf D, Julien J-P (2017) Withania somnifera reverses transactive response DNA binding protein 43 proteinopathy in a mouse model of amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neurotherapeutics 14:447–462

    Article  CAS  PubMed  Google Scholar 

  • Ederle H, Dormann D (2017) TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 591:1489–1507. https://doi.org/10.1002/1873-3468.12646

    Article  CAS  PubMed  Google Scholar 

  • Eid S, Turk S, Volkamer A et al (2017) KinMap : a web-based tool for interactive navigation through human kinome data. BMC Bioinform. https://doi.org/10.1186/s12859-016-1433-7

    Article  Google Scholar 

  • Eisen A (2009) Amyotrophic lateral sclerosis: evolutionary and other perspectives. Muscle Nerve 40:297–304

    Article  PubMed  Google Scholar 

  • Ferri A, Coccurello R (2017) What is “hyper” in the ALS Hypermetabolism? Mediat Inflamm. https://doi.org/10.1155/2017/7821672

    Article  Google Scholar 

  • Ghareeb DA, ElAhwany AMD, El-Mallawany SM, Saif AA (2014) In vitro screening for anti-acetylcholiesterase, anti-oxidant, anti-glucosidase, anti-inflammatory and anti-bacterial effect of three traditional medicinal plants. Biotechnol Biotechnol Equip 28:1155–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrero EN, Wang H, Mitra J et al (2016) TDP-43/FUS in motor neuron disease: complexity and challenges. Prog Neurobiol 145:78–97

    Article  PubMed  Google Scholar 

  • Guo W, Vandoorne T, Steyaert J et al (2020) The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 143:1651–1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández F, Nido JD, Avila J, Villanueva N (2009) GSK3 Inhibitors and Disease. MRMC 9:1024–1029

    Article  Google Scholar 

  • Jeong HY et al (2010) Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25–35)-induced neurotoxicity. Arch Pharm Res 33:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, DeSilva S, Turnbull J (2000) Beneficial effect of ginseng root in SOD-1 (G93A) transgenic mice. J Neurol Sci 180:52–54

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilani-Jaziri S, Mustapha N, Mokdad-Bzeouich I et al (2016) Flavones induce immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity: a structure-activity relationship study. Tumor Biol 37:6571–6579

    Article  CAS  Google Scholar 

  • Kim J (2016) Investigation of phenolic, flavonoid, and vitamin contents in different parts of Korean Ginseng (Panax ginseng C A Meyer). Prev Nutr Food Sci 21:263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh S-H, Baek W, Kim SH (2011) Brief review of the role of glycogen synthase kinase-3β in amyotrophic lateral sclerosis. Neurol Res Int 2011:205761

    Article  PubMed  PubMed Central  Google Scholar 

  • Konar A, Thakur MK (2017) Cellular and molecular targets underpinning memory enhancement by Ashwagandha. Science of Ashwagandha: preventive and therapeutic potentials. Springer, Berlin, pp 305–318

    Chapter  Google Scholar 

  • Kori M, Aydln B, Unal S et al (2016) Metabolic biomarkers and neurodegeneration: a pathway enrichment analysis of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Omi A J Integr Biol 20:645–661. https://doi.org/10.1089/omi.2016.0106

    Article  CAS  Google Scholar 

  • Kuhn M, von Mering C, Campillos M et al (2007) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36:D684–D688

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix S, Badoux JK, Parolo S et al (2018) OPEN A computationally driven analysis of the polyphenol-protein interactome. Sci Rep. https://doi.org/10.1038/s41598-018-20625-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagier-Tourenne C, Polymenidou M, Hutt KR et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-J et al (2009) Bioavailability of fermented Korean red ginseng. Prev Nutr Food Sci 14:201–207

    Article  CAS  Google Scholar 

  • Liang C, Shao Q, Zhang W et al (2019) Smcr8 deficiency disrupts axonal transport-dependent lysosomal function and promotes axonal swellings and gain of toxicity in C9ALS/FTD mouse models. Hum Mol Genet 28:3940–3953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Ye M, Guo H (2020) An updated review of randomized clinical trials testing the improvement of cognitive function of Ginkgo biloba extract in healthy people and Alzheimer’s patients. Front Pharmacol 10:1688

    Article  PubMed  PubMed Central  Google Scholar 

  • Longinetti E, Fang F (2019) Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol. https://doi.org/10.1097/WCO.0000000000000730

    Article  PubMed  PubMed Central  Google Scholar 

  • López MVN, Cuadrado MPG-S, Ruiz-Poveda OMP, Del Fresno AMV, Accame MEC (2007) Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta (BBA) 1770:1308–1316

    Article  PubMed  Google Scholar 

  • Luo Y et al (2002) Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc Natl Acad Sci 99:12197–12202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luthra R, Roy A (2022) Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol 23:123–139

    Article  CAS  PubMed  Google Scholar 

  • Madhi I, Kim J-H, Shin JE, Kim Y (2021) Ginsenoside Re exhibits neuroprotective effects by inhibiting neuroinflammation via CAMK/MAPK/NF-κB signaling in microglia. Mol Med Rep 24:1–10

    Article  Google Scholar 

  • Malek AM, Barchowsky A, Bowser R et al (2012) Pesticide exposure as a risk factor for amyotrophic lateral sclerosis: a meta-analysis of epidemiological studies: pesticide exposure as a risk factor for ALS. Environ Res 117:112–119

    Article  CAS  PubMed  Google Scholar 

  • Mathis S, Goizet C, Soulages A et al (2019) Genetics of amyotrophic lateral sclerosis: a review. J Neurol Sci 399:217–226. https://doi.org/10.1016/j.jns.2019.02.030

    Article  CAS  PubMed  Google Scholar 

  • Mccann EP, Henden L, Fifita JA et al (2021) Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J Ned Genet. https://doi.org/10.1136/jmedgenet-2020-106866

    Article  Google Scholar 

  • Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69:339–345

    Article  CAS  PubMed  Google Scholar 

  • Mitra J, Hegde PM, Hegde ML (2019) Loss of endosomal recycling factor RAB11 coupled with complex regulation of MAPK/ERK/AKT signaling in postmortem spinal cord specimens of sporadic amyotrophic lateral sclerosis patients. Mol Brain 12:1–4

    Article  Google Scholar 

  • Mohanan P, Subramaniyam S, Mathiyalagan R, Yang D-C (2018) Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 42:123–132

    Article  PubMed  Google Scholar 

  • Morello G, Salomone S, Agata VD et al (2020) From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis. Front Neurosci. https://doi.org/10.3389/fnins.2020.577755

    Article  PubMed  PubMed Central  Google Scholar 

  • Naik AA, Narayanan A, Khanchandani P, Sridharan D (2020) Systems analysis of avascular necrosis of femoral head using integrative data analysis and literature mining delineates pathways associated with disease. Sci Rep. https://doi.org/10.1038/s41598-020-75197-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Neelagandan N, Gonnella G, Dang S et al (2019) TDP-43 enhances translation of specific mRNAs linked to neurodegenerative disease. Nucleic Acids Res 47:341–361

    Article  CAS  PubMed  Google Scholar 

  • Ngo ST, Steyn FJ (2015) The interplay between metabolic homeostasis and neurodegeneration: Insights into the neurometabolic nature of amyotrophic lateral sclerosis. Cell Regen 4(4):5. https://doi.org/10.1186/s13619-015-0019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özduran G, Becer E, Vatansever HS (2021) The Role and Mechanisms of Action of Catechins in Neurodegenerative Diseases. J Am Coll Nutr. https://doi.org/10.1080/07315724.2021.1981487

    Article  PubMed  Google Scholar 

  • Pandey S, Sarma N (2017) Commentary: Amyotrophic lateral sclerosis: Ongoing search for prognostic biomarkers of longevity. Neurol India 65:1155

    Article  PubMed  Google Scholar 

  • Patin F, Corcia P, Vourc’h P et al (2017) Omics to explore amyotrophic lateral sclerosis evolution: the central role of arginine and proline metabolism. Mol Neurobiol 54:5361–5374. https://doi.org/10.1007/s12035-016-0078-x

    Article  CAS  PubMed  Google Scholar 

  • Piñero J, Bravo À, Queralt-Rosinach N et al (2016) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45:gkw943

    Google Scholar 

  • Pradhan SS, Thota SM, Saiswaroop R et al (2022) Integrated multi-omic analysis of Huntington disease and yeast model delineates pathways modulating protein aggregation. Dis Model Mech. https://doi.org/10.1242/dmm.049492

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabinovich-Toidman P, Becker M, Barbiro B, Solomon B (2012) Inhibition of amyloid precursor protein beta-secretase cleavage site affects survival and motor functions of amyotrophic lateral sclerosis transgenic mice. Neurodegener Dis 10:30–33

    Article  CAS  PubMed  Google Scholar 

  • Sahana TG, Zhang K (2021) Mitogen-activated protein kinase pathway in amyotrophic lateral sclerosis. Biomedicines 9:969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sai Swaroop R, Akhil PS, Sai Sanwid P et al (2022) Integrated multi-omic data analysis and validation with yeast model show oxidative phosphorylation modulates protein aggregation in amyotrophic lateral sclerosis. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2115555

    Article  PubMed  Google Scholar 

  • Sama RRK, Fallini C, Gatto R et al (2017) ALS-linked FUS exerts a gain of toxic function involving aberrant p38 MAPK activation. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  • Sarda RK, Sinha R, Sherpa M, Gupta A (2022) Crude extracts of bacopa monnieri induces dendrite formation in rodent neural stem cell cultures: a possible use in neuronal injury. J. Neurosci Rural Pract 13:254–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239. https://doi.org/10.1016/j.jns.2007.01.033

    Article  CAS  PubMed  Google Scholar 

  • Schroeder EK, Kelsey NA, Doyle J et al (2009) Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid Redox Signal 11:469–480

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani G, Almeida-Toledano L, Serra-Delgado M et al (2021) Therapeutic effects of catechins in less common neurological and neurodegenerative disorders. Nutrients 13:2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speldewinde SH, Grant CM (2016) Spermidine cures yeast of prions. Microb Cell 3:46

    Article  CAS  Google Scholar 

  • Spencer JPE (2007) The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2:257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srimadh Bhagavatham SK, Pulukool SK, Pradhan SS et al (2022) Systems biology approach delineates critical pathways associated with disease progression in rheumatoid arthritis. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2115555

    Article  PubMed  Google Scholar 

  • Tam OH, Rozhkov NV, Shaw R et al (2019) Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia. Cell Rep 29:1164–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tefera TW, Borges K (2017) Metabolic dysfunctions in amyotrophic lateral sclerosis pathogenesis and potential metabolic treatments. Front Neurosci. https://doi.org/10.3389/fnins.2016.00611

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokuda T (2012) Biomarkers for amyotrophic lateral sclerosis. Brain Nerve 64:515–523

    CAS  PubMed  Google Scholar 

  • Uddin MS et al (2016) Exploring the effect of Phyllanthus emblica L on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: promising natural gift for the mitigation of Alzheimer’s disease. Ann Neurosci 23:218–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Damme P, Robberecht W, Van Den Bosch L (2017) Modelling amyotrophic lateral sclerosis: Progress and possibilities. DMM Dis Model Mech 10:537–549. https://doi.org/10.1242/dmm.029058

    Article  CAS  PubMed  Google Scholar 

  • Vinceti M (2012) The environment and amyotrophic lateral sclerosis: converging clues from epidemiologic studies worldwide. N Am J Med Sci 4:356

    PubMed  PubMed Central  Google Scholar 

  • Vishnupriya P, Padma VV (2017) A review on the antioxidant and therapeutic potential of Bacopa monnieri. React Oxyg Spec 3:111–120

    Google Scholar 

  • Wang N et al (2021) Ginseng polysaccharides: a potential neuroprotective agent. J Ginseng Res 45:211–217

    Article  PubMed  Google Scholar 

  • Wang J, Fry CME, Walker CL (2019) Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis. Sci Rep 9:1–10

    Google Scholar 

  • White MA, Massenzio F, Li X et al (2021) Inhibiting glycogen synthase kinase 3 suppresses TDP-43-mediated neurotoxicity in a caspase-dependant manner. Biorxiv 27:472

    Google Scholar 

  • Wu J, Lin L, Chau F (2001) Ultrasound-assisted extraction of Ginseng saponins from ginseng roots and cultured ginseng cells. Ultron Sonochem 8:347–352

    Article  CAS  Google Scholar 

  • Xie Z, Bailey A, Kuleshov MV et al (2021) Gene set knowledge discovery with Enrichr. Curr Protoc 1:e90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YM, Gupta SK, Kim KJ et al (2013) A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12:713–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Soufan O, Ewald J et al (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234–W241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams

  • Wunderlich HA (2019) ALS-associated mutations in the FUS nuclear localization signal in mice alter the cytosolic protein and RNA interactome of FUS.

Download references

Acknowledgements

A sincere thanks to Sri Sathya Sai Institute of Higher Learning for providing free and valuable education. We acknowledge the grant support from the Department of Biotechnology-Basic Research in Modern Biology DBT (BRB): BT/PR8226/BRB/10/1224/2013, Department of Science and Technology-The Science and Engineering Research Board–Extra Mural Research DST-SERB-EMR: EMR/2017/005381, Department of Biotechnology- Bioinformatics Infrastructure facility DBT-BIF: BT/BI/25/063/2012, Department of Science and Technology- Fund for improvement of Science and Technology Infrastructure in Higher Educational Institutions (DST-FIST): SR/FST/LSI-616/2014, University Grants Commission-Special Assistance Program (UGC-SAP III): F.3-19 /2018/DRS-III(SAP-II) for infrastructure funding.

Author information

Authors and Affiliations

Authors

Contributions

The study was contributed by S.S.R. S.S.P helped in standardizing and processing several bio-informatic pipelines used for the study. D.D.V.M and K.S.P assisted in performing the yeast experiments. S.V conceptualized the entire idea, interpreted the results, and played a major role in the preparation of the manuscript.

Corresponding authors

Correspondence to R. Sai Swaroop or Venketesh Sivaramakrishnan.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaroop, R.S., Pradhan, S.S., Darshan, V.M.D. et al. Integrated network pharmacology approach shows a potential role of Ginseng catechins and ginsenosides in modulating protein aggregation in Amyotrophic Lateral Sclerosis. 3 Biotech 12, 333 (2022). https://doi.org/10.1007/s13205-022-03401-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03401-1

Keywords

Navigation