Skip to main content
Log in

Influence of enhanced dispersity of chemically treated MWNTs on physical properties of MWNTs/PVDF films

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, multi-walled carbon nanotubes (MWNTs) were treated chemically with ethylene glycol (EG) to improve their dispersion in the polymer matrix. Poly(vinylidene fluoride) (PVDF) films with different EGMWNT contents were prepared by solution casting and the surface characteristics of EG-MWNTs and interaction between the EG-MWNTs and PVDF matrixes were investigated. Using XPS and Zeta potential values compared to those of pristine MWNTs, the surface characteristics of the EG-MWNTs were determined by the increase in the number of oxygen groups. The ΔH m and XC of the PVDF films increased slightly with increasing EG-MWNT content. In addition, the tensile strength of the pure PVDF film increased significantly with increasing EG-MWNTs addition; its maximum value was observed at a 1.0 wt% EG-MWNT loading, and was 62% higher than that of a pure PVDF film. This was attributed to the improved dispersability of EG-MWNTs in the PVDF matrix, leading to strong physical interactions between the EG-MWNTs and PVDF matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Moniruzzaman and K. I. Winey, Macromolecules, 39, 5194 (2006).

    Article  CAS  Google Scholar 

  2. B. X. Yang, K. P. Pramoda, G. Q. Xu, and S. H. Goh, Adv. Funct. Mater., 17, 2062 (2007).

    Article  CAS  Google Scholar 

  3. P. Chen, H. S. Kim, and H. J. Jin, Macromol. Res., 17, 207 (2009).

    CAS  Google Scholar 

  4. M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon, 43, 1499 (2005).

    Article  CAS  Google Scholar 

  5. S. R. Forrest, Nature, 428, 911 (2004).

    Article  CAS  Google Scholar 

  6. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev., 106, 1105 (2006).

    Article  CAS  Google Scholar 

  7. M. J. Sobkowicz, J. R. Dorgan, K. W. Gneshin, A. M. Herring, and J. T. McKinnon, Carbon, 47, 622 (2009).

    Article  CAS  Google Scholar 

  8. D. B. Mawhinney and J. T. J. Yates, Carbon, 39, 1167 (2000).

    Article  Google Scholar 

  9. H. Peng, P. Reverdy, V. N. Khabashesku, and J. L. Margrave, Chem. Commun., 2003, 362 (2003).

    Article  Google Scholar 

  10. B. B. J. Basu and A. K. Paranthaman, Appl. Surf. Sci., 255, 4479 (2009).

    Article  CAS  Google Scholar 

  11. X. Huang, P. Jiang, C. Kim, F. Liu, and Y. Yin, Eur. Polym. J., 45, 377 (2009).

    Article  CAS  Google Scholar 

  12. S. Manna, S. K. Batabyal, and A. K. Nandi, J. Phys. Chem. B, 110, 12318 (2006).

    Article  CAS  Google Scholar 

  13. M. Q. Tran, M. S. P. Shaffer, and A. Bismarck, Macromol. Mater. Eng., 293, 188 (2008).

    Article  CAS  Google Scholar 

  14. C. Zhou, S. Wang, Q. Zhuang, and Z. Han, Carbon, 46, 1232 (2008).

    Article  CAS  Google Scholar 

  15. M. A. Lopes, F. J. Monteiro, J. D. Santos, A. P. Serro, and B. Saramago, Biomed. Mater. Res., 45, 370 (1999).

    Article  CAS  Google Scholar 

  16. S. J. Park and J. S. Kim, Carbon, 39, 2011 (2001).

    Article  CAS  Google Scholar 

  17. H. Hu, A. Yu, E. Kim, B. Zhao, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Phys. Chem. B, 109, 11520 (2005).

    Article  CAS  Google Scholar 

  18. A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay, and M. S. P. Shaffer, Carbon, 44, 3149 (2006).

    Article  CAS  Google Scholar 

  19. S. H. Lee, J. S. Park, C. M. Koo, B. K. Lim, and S. O. Kim, Macromol. Res., 16, 261 (2008).

    CAS  Google Scholar 

  20. C. A. Martin, J. K. W. Sandler, M. S. P. Shaffer, M. K. Schwarz, W. Bauhofer, K. Schulte, and A. H. Windle, Comp. Sci. Technol., 64, 2309 (2004).

    Article  CAS  Google Scholar 

  21. M. S. Han, Y. K. Lee, W. N. Kim, H. S. Lee, J. S. Joo, M. Park, H. J. Lee, and C. R. Park, Macromol. Res., 17, 863 (2009).

    CAS  Google Scholar 

  22. A. R. Hopkins and J. R. Reynolds, Macromolecules, 22, 5221 (2000).

    Article  Google Scholar 

  23. Y. Bin, M. Mine, A. Koganemaru, X. Jiang, and M. Matsuo, Polymer, 47, 1308 (2006).

    Article  CAS  Google Scholar 

  24. J. N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K. P. Ryan, and C. Belton, Adv. Funct. Mater., 14, 791 (2004).

    Article  CAS  Google Scholar 

  25. M. K. Seo, J. R. Lee, and S. J. Park, Mater. Sci. Eng. A, 404, 79 (2005).

    Article  Google Scholar 

  26. B. K. Lim, S. H. Lee, J. S. Park, and S. O. Kim, Macromol. Res., 17, 666 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Park, SJ. Influence of enhanced dispersity of chemically treated MWNTs on physical properties of MWNTs/PVDF films. Macromol. Res. 18, 981–985 (2010). https://doi.org/10.1007/s13233-010-1011-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-1011-1

Keywords

Navigation