Skip to main content
Log in

On preference of insertion mechanism in the ethylene polymerization catalyzed by half-titanocene complexes with aryloxy ligands: Static and dynamic theoretical studies

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The Ziegler-Rauk bond-energy decomposition analysis was performed for the frontside (FS) and backside (BS) transition states of ethylene insertion in the processes catalyzed by half-titanocenes with phenoxy ligands to rationalize the origin of the energetic preference of the backside insertion observed for the complexes with monosubstituted phenoxide(Type 4 catalysts). The final preference of the backside or frontside transition state comes as a balance between the electronic preference of the former, and the steric preference of the latter. The unique energetic preference of the backside insertion observed for Type 4 catalysts appears to be a result of reduced steric crowding. The openness near the metal center and conformational flexibility leads to enhanced catalytic activity of those systems. In addition, Car-Parinello molecular dynamic simulations were carried out to examine the influence of entropic effects on the preference of the insertion mechanism. For Type 4 catalysts, the spontaneous frontside insertion was observed. Therefore, at the free-energy level, frontside insertion becomes viable due to entropic destabilization of the backside transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sinn and W. Kaminsky, Adv. Organomet. Chem., 18, 99 (1980).

    Article  CAS  Google Scholar 

  2. H. G. Alt and A. Koppl, Chem. Rev., 100, 1205 (2000).

    Article  CAS  Google Scholar 

  3. S. D. Ittel, L. K. Johnson, and M. Brookhart, Chem. Rev., 100, 1169 (2000).

    Article  CAS  Google Scholar 

  4. V. C. Gibson and S. K. Spitzmesser, Chem. Rev., 103, 283 (2003).

    Article  CAS  Google Scholar 

  5. K. Nomura, J. Liu, S. Padmanabhan, and B. Kitiyanan, J. Mol. Catal. A, 267, 1 (2007).

    Article  CAS  Google Scholar 

  6. L. R. Sita and R. Babcock, Organometallics, 17, 5228 (1998).

    Article  CAS  Google Scholar 

  7. S. Zhang, W. E. Piers, X. Gao, and M. Parvez, J. Am. Chem. Soc., 122, 5499 (2000).

    Article  CAS  Google Scholar 

  8. T. A. Manz, K. Phomphrai, G. Medvedev, B. B. Krishnamurthy, S. Sharma, J. Hag, K. A. Novstrup, K. T. Thomson, W. N. Delgass, J. M. Caruthers, and M. M. Abu-Omar, J. Am. Chem. Soc., 129, 3776 (2007).

    Article  CAS  Google Scholar 

  9. Y.-X. Chen and T. J. Marks, Organometallics, 16, 3649 (1997).

    Article  CAS  Google Scholar 

  10. J. C. Stevens, Stud. Surf. Sci. Catal., 89, 277 (1994).

    Article  CAS  Google Scholar 

  11. J. C. Stevens, Stud. Surf. Sci. Catal., 101, 11 (1996).

    Article  CAS  Google Scholar 

  12. J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. Knight, and S. Y. Lai, EP 90-309496 416815, 19900830 (1991).

  13. H. Hanaoka, T. Hino, M. Nabika, T. Kohno, K. Yanagi, Y. Oda, A. Imai, and K. Mashima, J. Organomet. Chem., 692, 4717 (2007).

    Article  CAS  Google Scholar 

  14. H. Katayama, M. Nabika, A. Imai, A. Miyashita, T. Watanabe, H. Johohji, Y. Oda, and H. Hanaoka, PCT Appl. WO 97-03992 (1997).

  15. D. W. Stephan, J. C. Stewart, F. Guerin, S. Courtenay, J. Kickham, E. Hollink, C. Beddie, A. Hoskin, T. Graham, P. Wei, R. E. v. H. Spence, W. Xu, L. Koch, X. Gao, and D. G. Harrison, Organometallics, 22, 1937 (2003).

    Article  CAS  Google Scholar 

  16. D. W. Stephan, J. C. Stewart, F. Guerin, R. E. v. H. Spence, W. Xu, and D. G. Harrison, Organometallics, 18, 1116 (1999).

    Article  CAS  Google Scholar 

  17. K. Nomura, N. Naga, M. Miki, K. Yanagi, and A. Imai, Organometallics, 17, 2152 (1998).

    Article  CAS  Google Scholar 

  18. K. Nomura, N. Naga, M. Miki, and K. Yanagi, Macromolecules, 31, 7588 (1998).

    Article  CAS  Google Scholar 

  19. K. Phomphrai, A. E. Fenwick, S. Sharma, P. E. Fanwick, J. M. Caruthers, W. N. Delgass, M. M. Abu-Omar, and I. P. Rothwell, Organometallics, 25, 214 (2006).

    Article  CAS  Google Scholar 

  20. T.-J. Kim, S. K. Kim, B.-J. Kim, J.-S. Hahn, M.-A. Ok, J. H. Song, D.-H. Shin, J. Ko, M. Cheng, J. Kim, H. Won, M. Mitoraj, M. Srebro, A. Michalak, and S. O. Kang, Macromolecules, 42, 6932 (2009).

    Article  CAS  Google Scholar 

  21. P. Cossee, Tetrahedron Lett., 38, 12 (1960).

    Article  Google Scholar 

  22. P. Cossee, J. Catal., 3, 80 (1964).

    Article  CAS  Google Scholar 

  23. E. J. Arlman, J. Catal., 3, 89 (1964).

    Article  CAS  Google Scholar 

  24. E. J. Arlman and P. Cossee, J. Catal., 3, 99 (1964).

    Article  CAS  Google Scholar 

  25. E. J. Arlman, J. Catal., 5, 178 (1966).

    Article  CAS  Google Scholar 

  26. P. Margl, L. Deng, and T. Ziegler, Organometallics, 17, 933 (1998).

    Article  CAS  Google Scholar 

  27. P. Margl, L. Deng, and T. Ziegler, J. Am. Chem. Soc., 120, 5517 (1998).

    Article  CAS  Google Scholar 

  28. T. Ziegler and A. Rauk, Inorg. Chem., 18, 1755 (1979).

    Article  CAS  Google Scholar 

  29. T. Ziegler and A. Rauk, Inorg. Chem., 18, 1558 (1979).

    Article  CAS  Google Scholar 

  30. A. Becke, Phys. Rev. A, 38, 3098 (1988).

    Article  CAS  Google Scholar 

  31. J. P. Perdew, Phys. Rev. B, 34, 7406, (1986).

    Article  Google Scholar 

  32. J. P. Perdew, Phys. Rev. B, 33, 8822 (1986).

    Article  Google Scholar 

  33. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem., 22, 931 (2001) and refs therein.

    Article  Google Scholar 

  34. E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys., 2, 41 (1973).

    Article  CAS  Google Scholar 

  35. E. J. Baerends and P. Ros, Chem. Phys., 2, 52 (1973).

    Article  CAS  Google Scholar 

  36. G. te Velde and E. J. Baerends, J. Comput. Phys., 99, 84 (1992).

    Article  Google Scholar 

  37. C. Fonseca Guerra, O. Visser, J. G. Snijders, G. te Velde, and E. J. Baerends, in Methods and Techniques in Computational Chemistry, METECC-95, E. Clementi and G. Corongiu, Eds., STEF, Cagliari, Italy, 1995, p 303–395.

    Google Scholar 

  38. CPMD, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001.

  39. C. Hartwigsen, S. Goedecker, and J. K. Hutter, Phys. Rev. B, 58, 3641 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Michalak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srebro, M., Piękoś, Ł., Michalak, A. et al. On preference of insertion mechanism in the ethylene polymerization catalyzed by half-titanocene complexes with aryloxy ligands: Static and dynamic theoretical studies. Macromol. Res. 18, 960–966 (2010). https://doi.org/10.1007/s13233-010-1012-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-1012-0

Keywords

Navigation