Skip to main content
Log in

Characterization of a Fricke dosimeter at high energy photon and electron beams used in radiotherapy

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The dosimetric features of the Fricke dosimeter in clinical linear accelerator beams are considered. Experimental data were obtained using various nominal energies 6 and 18 MV, 12 and 15 MeV, including the 60Co γ-ray beam. The calibration of the dosimeters was performed using the ionization chamber as a reference dosimeter. Some general characteristics of Fricke dosimeter such as energy dependence, optical density (OD)-dose relationship, reproducibility, accuracy, dose rate dependence were analyzed. The Fricke solution shows linearity in OD-dose relationship, energy independence and a good reproducibility over the energy range investigated. The Fricke dosimeter was found to be suitable for carrying out absorbed dose to water measurements in the calibration of high energy electron and photon beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shortt KR, Klassen NV, Ross CK, Smith GD (1988) Ferrous sulfate dosimetry and its role in establishing an absorbed dose to water standard for the National Research Council of Canada. In: Ross CK, Klassen NV (eds) Proceedings of the NRC Workshop on Water Calorimetry (NRC Report 29637) National Research Council of Canada, Ottawa, pp 121–126

  2. Ross CK, Klassen NV, Shortt KR, Smith GD (1989) A direct comparison of water calorimetry and Fricke dosimetry. Phys Med Biol 34:23–42

    Article  PubMed  CAS  Google Scholar 

  3. Ma CM, Rogers DWO, Shortt KR, Ross CK, Nahum AE, Bielajew AF (1993) Wall-correction and absorbed-dose conversion factors for Fricke dosimetry: Monte Carlo calculations and measurements. Med Phys 20:283–292

    Article  PubMed  CAS  Google Scholar 

  4. Svensson H, Brahme A (1979) Ferrous sulphate dosimetry for electrons. Acta Radiol Oncol 18:326–336

    Article  CAS  Google Scholar 

  5. Shortt KR, Ross CK, Schneider M, Hohlfeld K et al (1993) A comparison of absorbed dose standards for high-energy X-rays. Phys Med Biol 38:1937–1955

    Article  Google Scholar 

  6. Klassen NV, Shortt KR, Seuntjens J, Ross CK (1999) Fricke dosimetry: the difference between G(Fe3+) for 60Co γ-rays and high-energy X-rays. Phys Med Biol 44:1609–1624

    Article  PubMed  CAS  Google Scholar 

  7. Andreo P (2000) A comparison between calculated and experimental k Q photon beam quality correction factors. Phys Med Biol 45(9):L25–L38

    Article  PubMed  CAS  Google Scholar 

  8. Besserer J, Bilski P, de Boer J, Kwiecieh T et al (2001) Dosimetry of low-energy protons and light ions. Phys Med Biol 46(2):473–485

    Article  PubMed  CAS  Google Scholar 

  9. Chauvenet B, Baltes D, Delaunay F (1997) Comparison of graphite-to water absorbed-dose transfers for 60Co photon beams using ionometry and Fricke dosimetry. Phys Med Biol 42(11):2053–2063

    Article  PubMed  CAS  Google Scholar 

  10. Chen WL, Chang SC (1984) The use of the ferrous sulphate dosimeter for intercomparison of absorbed dose from electron beams. Med Phys 11(3):335–337

    Article  PubMed  CAS  Google Scholar 

  11. Villarreal-Barajas JE, Gonzalez-Martinez PR, Urena-Nunez F et al (2002) Intercomparison of absorbed dose to water measurements for 60Co gamma rays using Fricke, alanine and radiochromic dye film dosimetry. Radiat Prot Dosim 101(1–4):449–451

    CAS  Google Scholar 

  12. Zwicker RD, Andrew Wu, Sternick ES (1991) Comparison of dose calibration by ionometric and chemical dosimetry for 6- and 45 MV X-ray beams. Med Phys 18(6):1251–1253

    Article  PubMed  CAS  Google Scholar 

  13. American Association of Physicists in Medicine (TG-21) (1983) A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med Phys 10:741–771

    Article  Google Scholar 

  14. ICRU (1984a) Radialion dosimetry: electron beams with energies between 1 and 50 MeV. ICRU Report 35, International Commission on Radiation Units and Measurements, Bethesda

  15. ASTM standard E 1026 Standard method for using the ferrous sulfate Fricke dosimeter to measure absorbed dose in water

  16. Davies JV, Law J (1963) Practical aspects of ferrous sulphate dosimetry. Phys Med Biol 8:91–96

    Article  PubMed  CAS  Google Scholar 

  17. IAEA (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Technical Reports Series 398 (International Atomic Energy Agency)

  18. ICRU (1982) The dosimetry of Pulsed Radiation. ICRU Report 34. International Commission on Radiation Units and Measurements, Bethesda

  19. Shortt KR (1989) The temperature dependence of G (Fe3+) for the Fricke dosemeter. Phys Med Biol 10:1923–1926

    Article  Google Scholar 

  20. ISO (1993) Guide to the Expression of uncertainty in measurement. International Organization for Standardization, Geneva

  21. Stewart KJ, Seuntjens J (2002) Comparing calibration methods of electron beams using plane-parallel chambers with absorbed-dose to water based protocols. Med Phys 29(3):284–289

    Article  PubMed  CAS  Google Scholar 

  22. Smith CW (1996) Orthovoltage X-ray beams (0.5 mm–4.0 mm Cu HVL). Br J Radiol 25:24–38

    Google Scholar 

  23. Jordan TJ (1996) Megavoltage X-ray beams: 2–50 MV. Br J Radiol 25:62–109

    Google Scholar 

  24. Pimpinella M, Guerra AS, La Civita S, Laitano RF (2007) Procedure for absorbed dose to water determination in high energy photon and electron beams by ferrous sulphate dosimeter at INMRI-ENEA. Absorbed Dose and Air Kerma Primary Standards, Paris

Download references

Acknowledgments

Grateful acknowledgement is made to Dr. B. Hocini (Mustapha Hospital, Algiers) for allowing us to use their hospital’s equipment. We also thank radio-physicists of their staff for their help in making the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Moussous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moussous, O., Khoudri, S. & Benguerba, M. Characterization of a Fricke dosimeter at high energy photon and electron beams used in radiotherapy. Australas Phys Eng Sci Med 34, 523–528 (2011). https://doi.org/10.1007/s13246-011-0093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-011-0093-1

Keywords

Navigation