Skip to main content

Advertisement

Log in

A Bayesian Approach for Data-Driven Dynamic Equation Discovery

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Many real-world scientific and engineering processes are governed by complex nonlinear interactions, and differential equations are commonly used to explain the dynamics of these complex systems. While the differential equations generally capture the dynamics of the system, they impose a rigid modeling structure that assumes the dynamics of the system are known. Even when some of the dynamical relationships are known, rarely do we know the form of the governing equations. Learning these governing equations can improve our understanding of the mechanisms driving the complex systems. Here, we present a Bayesian data-driven approach to nonlinear dynamic equation discovery. The Bayesian framework can accommodate measurement noise and missing data, which are common in these systems, and accounts for model parameter uncertainty. We illustrate our method using simulated data as well as three real-world applications for which dynamic equations are used to study real-world processes.

Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version5/.anom/.

References

  • Barnston AG, Glantz MH, He Y (1999) Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–98 El Niño episode and the 1998 La Niña onset. Bull Am Meteor Soc 80(2):217–244

    Article  Google Scholar 

  • Berliner LM (1996) Hierarchical Bayesian time series models. Maximum Entropy and Bayesian Methods. Springer, Netherlands, Dordrecht, pp 15–22

    Chapter  MATH  Google Scholar 

  • Berliner LM (2003) Physical-statistical modeling in geophysics. J Geophys Res: Atmospheres, 108(D24)

  • Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Rev 59(1):65–98

    Article  MathSciNet  MATH  Google Scholar 

  • Bongard J, Lipson H (2007) Automated reverse engineering of nonlinear dynamical systems. Proc Natl Acad Sci 104(24):9943–9948

    Article  MATH  Google Scholar 

  • Boninsegna L, Nüske F, Clementi C (2018) Sparse learning of stochastic dynamical equations. J Chem Phys 148(24):241723

    Article  Google Scholar 

  • Both G-J, Choudhury S, Sens P, Kusters R (2021) DeepMoD: Deep learning for model discovery in noisy data. J Comput Phys 428(1):109985

    Article  MathSciNet  MATH  Google Scholar 

  • Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci 113(15):3932–3937

    Article  MathSciNet  MATH  Google Scholar 

  • Bulmer MG (1974) A statistical analysis of the 10-year cycle in Canada. J Anim Ecol 43(3):701–718

    Article  Google Scholar 

  • Champion K, Zheng P, Aravkin AY, Brunton SL, Kutz JN (2020) A unified sparse optimization framework to learn parsimonious physics-informed models from data. IEEE Access 8:169259–169271

    Article  Google Scholar 

  • Chartrand R (2011) Numerical differentiation of noisy, nonsmooth data. ISRN Appl Math 2011:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie NAC, Wikle CK (2011) Statistics For Spatio-Temporal Data. John Wiley & Sons, US

    MATH  Google Scholar 

  • de Silva B, Champion K, Quade M, Loiseau J-C, Kutz J, Brunton S (2020) PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data. J Open Source Softw 5(49):2104

    Article  Google Scholar 

  • Elton C, Nicholson M (1942) The ten-year cycle in numbers of the lynx in Canada. J Anim Ecol 11(2):215–244

    Article  Google Scholar 

  • Fasel U, Kutz JN, Brunton BW, Brunton SL (2022) Ensemble-sindy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Proceed Royal Soc A 478(2260):20210904

    Article  MathSciNet  Google Scholar 

  • Galioto N, Gorodetsky AA (2020) Bayesian system ID: Optimal management of parameter, model, and measurement uncertainty. Nonlinear Dyn 102(1):241–267

    Article  Google Scholar 

  • Gauss CF (1809) Theoria motus corporum coelestium in sectionibus conicis solem ambientium

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Anal 1(3):515–533

    Article  MathSciNet  MATH  Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889

    Article  Google Scholar 

  • George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Stat Sin 7(2):339–373

    MATH  Google Scholar 

  • George EI, Sun D, Ni S (2008) Bayesian stochastic search for VAR model restrictions. J Economet 142(1):553–580

    Article  MathSciNet  MATH  Google Scholar 

  • Hewitt E, Hewitt RE (1979) The Gibbs-Wilbraham phenomenon: an episode in Fourier analysis. Arch Hist Exact Sci 21(2):129–160

    Article  MathSciNet  MATH  Google Scholar 

  • Higham NJ, Dennis MR, Glendinning P, Martin PA, Santosa F, Tanner J (2016) The Princeton Companion to Applied Mathematics. Princeton University Press, US

    Book  MATH  Google Scholar 

  • Hirsh SM, Barajas-Solano DA, Kutz JN (2021) Sparsifying priors for Bayesian uncertainty quantification in model discovery. arXiv preprint arXiv:2107.02107, pages 1–22

  • Hooten MB, Wikle CK (2008) A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian Collared-Dove. Environ Ecol Stat 15(1):59–70

    Article  MathSciNet  Google Scholar 

  • Huang A, Wand MP (2013) Simple marginally noninformative prior distributions for covariance matrices. Bayesian Anal 8(2):439–452

    Article  MathSciNet  MATH  Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H-M (2017) Extended reconstructed sea surface temperature, version 5 (ersstv5): upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  • Krebs CJ, Boonstra R, Boutin S, Sinclair AR (2001) What drives the 10-year cycle of snowshoe hares? Bioscience 51(1):25–35

    Article  Google Scholar 

  • Kuhnert PM (2017) Physical-Statistical Modeling. In: Wiley StatsRef: Statistics Reference Online, pp. 1–5. Wiley

  • Legendre AM (1806) Nouvelles méthodes pour la détermination des orbites des cometes. F. Didot

  • Li Q, Lin N (2010) The Bayesian elastic net. Bayesian. Analysis 5(1):151–170

    MathSciNet  MATH  Google Scholar 

  • Long Z, Lu Y, Dong B (2019) PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network. J Comput Phys 399:108925

    Article  MathSciNet  MATH  Google Scholar 

  • Long Z, Lu Y, Ma X, and Dong B (2017) PDE-Net: Learning PDEs from data. 35th International Conference on Machine Learning, ICML 2018, 7:5067–5078

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Article  MathSciNet  MATH  Google Scholar 

  • Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci 6(7):410–415

    Article  Google Scholar 

  • Mandt S, Hoffman M, Blei D (2016) A variational analysis of stochastic gradient algorithms. Proceedings of The 33rd International Conference on Machine Learning, 48:354–363

  • Milliff RF, Bonazzi A, Wikle CK, Pinardi N, Berliner LM (2011) Ocean ensemble forecasting. Part I: Ensemble Mediterranean winds from a Bayesian hierarchical model. Q J R Meteorol Soc 137(657):858–878

    Article  Google Scholar 

  • Niven R, Mohammad-Djafari A, Cordier L, Abel M, Quade M (2020) Bayesian identification of dynamical systems. Proceedings 33(1):33

  • Philander S (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, Cambridge

    Google Scholar 

  • Raissi M, Karniadakis GE (2018) Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141

    Article  MathSciNet  MATH  Google Scholar 

  • Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations. ArXiv, pp. 1–22

  • Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  • Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481):1026–1030

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional Data Anal. Springer Series in Statistics, Springer, New York, New York, NY

    Book  Google Scholar 

  • Revels J, Lubin M, Papamarkou T (2016) Forward-mode automatic differentiation in Julia. ArXiv

  • Royle JA, Berliner LM, Wikle CK, Milliff R (1999) A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador Sea. In: Case Studies in Bayesian Statistics., pp. 367–382. Springer, New York, NY

  • Rudy SH, Alla A, Brunton SL, Kutz JN (2019) Data-driven identification of parametric partial differential equations. SIAM J Appl Dyn Syst 18(2):643–660

    Article  MathSciNet  MATH  Google Scholar 

  • Rudy SH, Brunton SL, Proctor JL, Kutz JN (2017) Data-driven discovery of partial differential equations. Sci Adv 3(4):e1602614

    Article  Google Scholar 

  • Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324(5923):81–85

    Article  Google Scholar 

  • Shumway RH Stoffer DS (2017) Time series analysis and its applications with R examples. Springer, 4 edition

  • Sun Y, Zhang L, Schaeffer H (2019) NeuPDE: Neural network based ordinary and partial differential equations for modeling time-dependent data. arXiv preprint arXiv:1908.03190, 107(2016):352–372

  • van Oldenborgh GJ, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DL (2005) Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J Clim 18(16):3240–3249

    Article  Google Scholar 

  • Wang JL, Chiou JM, Müller HG (2016) Functional data analysis. Ann Rev Statistics and Its Appl 3:257–295

    Article  Google Scholar 

  • Wikle CK (2003) Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84(6):1382–1394

    Article  Google Scholar 

  • Wikle CK, Holan SH (2011) Polynomial nonlinear spatio-temporal integro-difference equation models. J Time Ser Anal 32(4):339–350

    Article  MathSciNet  MATH  Google Scholar 

  • Wikle CK, Milliff RF, Nychka D, Berliner LM (2001) Spatiotemporal hierarchical bayesian modeling tropical ocean surface winds. J Am Stat Assoc 96(454):382–397

    Article  MathSciNet  MATH  Google Scholar 

  • Wu K, Xiu D (2020) Data-driven deep learning of partial differential equations in modal space. J Comput Phys 408:109307

    Article  MathSciNet  MATH  Google Scholar 

  • Xu H, Zhang D, Zeng J (2021) Deep-learning of parametric partial differential equations from sparse and noisy data. Phys Fluids 33(3):037132

    Article  Google Scholar 

  • Yang Y, Aziz Bhouri M, Perdikaris P (2020) Bayesian differential programming for robust systems identification under uncertainty. Proceed Royal Soc A: math Phys Eng Sci 476(2243):20200290

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Lin G (2018) Robust data-driven discovery of governing physical laws with error bars. Proceed Royal Soc A: Math, Phys Eng Sci 474(2217):20180305

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Tao Y, Li Z (2007) Factors affecting hare-lynx dynamics in the classic time series of the Hudson Bay Company Canada. Climate Res 34(2):83–89

    Article  Google Scholar 

  • Zheng P, Askham T, Brunton SL, Kutz JN, Aravkin AY (2019) A unified framework for sparse relaxed regularized regression: SR3. IEEE Access 7:1404–1423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua S. North.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Data available

The data and materials associated with this manuscript are available on GitHub at https://github.com/jsnowynorth/DEtection.jl

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 3243 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

North, J.S., Wikle, C.K. & Schliep, E.M. A Bayesian Approach for Data-Driven Dynamic Equation Discovery. JABES 27, 728–747 (2022). https://doi.org/10.1007/s13253-022-00514-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-022-00514-1

Keywords

Navigation