Skip to main content
Log in

Epigenetic reorganization during early embryonic lineage specification

  • Minireview
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Dynamic chromatin reorganization occurs during two waves of cell lineage specification process, blastocyst formation and gastrulation, to generate distinct cell types. Epigenetic defects have been associated with severe developmental defects and diseases. How epigenetic remodeling coordinates the two lineage specification waves is becoming uncovered, benefiting from the development and application of new technologies including low-input or single-cell epigenome analysis approached in the past few years.

Objective

In this review, we aim to highlight the most recent findings on epigenetic remodeling in cell lineage specification during blastocyst formation and gastrulation.

Methods

First, we introduce how DNA methylation dynamically changes in blastocyst formation and gastrulation and its function in transcriptional regulation lineage-specific genes. Then, we discuss widespread remodeling of histone modification at promoters and enhancers in orchestrating the trajectory of cell lineage specification. Finally, we review dynamics of chromatin accessibility and 3D structure regulating developmental gene expression and associating with specific transcription factor binding events at stage specific manner. We also highlight the key questions that remain to be answered to fully understand chromatin regulation and reorganization in lineage specification.

Conclusion

Here, we summarize the recent advances and discoveries on epigenetic reorganization and its roles in blastocyst formation and gastrulation, and how it cooperates with the lineage specification, painting from global sequencing data from mouse in vivo tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, Polak L, Kadaja M, Asare A, Zheng DY et al (2015) Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature 521:366–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson R, Sandelin A (2020) Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 21:71–87

    Article  CAS  PubMed  Google Scholar 

  • Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani CA, Imaz-Rosshandler I, Lohoff T, Xiang YL, Hanna CW et al (2019) Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103

    Article  CAS  PubMed  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR et al (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie XH, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bowman GD, Poirier MG (2015) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295

    Article  CAS  PubMed  Google Scholar 

  • Burton A, Torres-Padilla ME (2014) Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 15:722–734

    Article  Google Scholar 

  • Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49:825–837

    Article  CAS  PubMed  Google Scholar 

  • Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    Article  CAS  PubMed  Google Scholar 

  • Chazaud C, Yamanaka Y (2016) Lineage specification in the mouse preimplantation embryo. Development 143:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107:21931–21936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl JA, Reiner AH, Klungland A, Wakayama T, Collas P (2010) Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS ONE 5:e9150

    Article  PubMed  PubMed Central  Google Scholar 

  • Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, Anastassiadis K, Stunnenberg HG, Stewart AF (2014) Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141:526–537

    Article  CAS  PubMed  Google Scholar 

  • Di Croce L, Helin K (2013) Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20:1147–1155

    Article  PubMed  Google Scholar 

  • Dileep V, Rivera-Mulia JC, Sima J, Gilbert DM (2015) Large-scale chromatin structure-function relationships during the cell cycle and development: insights from replication timing. Cold Spring Harb Symp Quant Biol 80:53–63

    Article  PubMed  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ea V, Baudement MO, Lesne A, Forne T (2015) Contribution of topological domains and loop formation to 3D chromatin organization. Genes 6:734–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fergusonsmith AC, Sasaki H, Cattanach BM, Surani MA (1993) Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362:751–755

    Article  CAS  Google Scholar 

  • Flyamer IM, Gassler J, Imakaev M, Brandao HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana-Konwalski K (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin JP, Hansen KD (2015) Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol 16:180

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao L, Wu K, Liu Z, Yao X, Yuan S, Tao W, Yi L, Yu G, Hou Z, Fan D et al (2018) Chromatin accessibility landscape in human early embryos and its association with evolution. Cell 173:248–259

    Article  CAS  PubMed  Google Scholar 

  • Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    Article  CAS  PubMed  Google Scholar 

  • Heinz S, Romanoski CE, Benner C, Glass CK (2015) The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 16:144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iguchiariga SMM, Schaffner W (1989) CpG methylation of the cAMP-responsive enhancer promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3:612–619

    Article  CAS  Google Scholar 

  • Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 108:3642–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jambhekar A, Dhall A, Shi Y (2019) Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 20:625–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Mendizabal I, Berto S, Chatterjee P, Layman T, Usui N, Toriumi K, Douglas C, Singh D, Huh I et al (2021) Evolution of DNA methylation in the human brain. Nat Commun 12:2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z, He LZ, Rotem A, Janzer A, Cheng CS, Regev A, Struhl K (2018) Genome-scale identification of transcription factors that mediate an inflammatory network during breast cellular transformation. Nat Commun 9:2068

    Article  PubMed  PubMed Central  Google Scholar 

  • Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 20:207–220

    Article  CAS  PubMed  Google Scholar 

  • Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima Y, Tam OH, Tam PP (2014) Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 34:65–75

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32:42–56

    Article  CAS  PubMed  Google Scholar 

  • Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XY, Wang CF, Liu WQ, Li JY, Li C, Kou XC, Chen JY, Zhao YH, Gao HB, Wang H et al (2016) Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537:558–562

    Article  CAS  PubMed  Google Scholar 

  • Lu ZF, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ (2017) Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res 45:e41

    Article  PubMed  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LD, Le T, Fan GP (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38

    Article  CAS  PubMed  Google Scholar 

  • Niu YY, Sun NQ, Li C, Lei Y, Huang ZH, Wu J, Si CY, Dai X, Liu CY, Wei JK et al (2019) Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366:eaaw5754

    Article  CAS  PubMed  Google Scholar 

  • Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci USA 115:E6697–E6706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong CT, Corces VG (2012) Enhancers: emerging roles in cell fate specification. EMBO Rep 13:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips-Cremins JE, Sauria MEG, Sanyal A, Gerasimova TI, Lajoie BR, Bell JSK, Ong CT, Hookway TA, Guo CY, Sun YH et al (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pijuan-Sala B, Wilson NK, Xia J, Hou X, Hannah RL, Kinston S, Calero-Nieto FJ, Poirion O, Preissl S, Liu F et al (2020) Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis. Nat Cell Biol 22:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posfai E, Tam OH, Rossant J (2014) Mechanisms of pluripotency in vivo and in vitro. Curr Top Dev Biol 107:1–37

    Article  CAS  PubMed  Google Scholar 

  • Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES et al (2014) A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Yue F (2015) Transcriptional enhancers: bridging the genome and phenome. Cold Spring Harb Symp Quant Biol 80:17–26

    Article  PubMed  Google Scholar 

  • Rossant J, Tam PP (2004) Emerging asymmetry and embryonic patterning in early mouse development. Dev Cell 7:155–164

    Article  CAS  PubMed  Google Scholar 

  • Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19:789–800

    Article  CAS  PubMed  Google Scholar 

  • Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M et al (2017) Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation. Nat Genet 49:1522–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryba T, Hiratani I, Lu JJ, Itoh M, Kulik M, Zhang JF, Schulz TC, Robins AJ, Dalton S, Gilbert DM (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenfelder S, Mifsud B, Senner CE, Todd CD, Chrysanthou S, Darbo E, Hemberger M, Branco MR (2018) Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages. Nat Commun 9:4189

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB (2014) Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell 55:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZD, Shi JT, Gu HC, Donaghey J, Clement K, Cacchiarelli D, Gnirke A, Michor F, Meissner A (2017) Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 549:543–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Stroud H, Su SC, Hrvatin S, Greben AW, Renthal W, Boxer LD, Nagy MA, Hochbaum DR, Kinde B, Gabel HW et al (2017) Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171:1151–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toenhake CG, Fraschka SAK, Vijayabaskar MS, Westhead DR, Heeringen SJ, Bartfai R (2018) Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development. Cell Host Microbe 23:557-569.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into the genome. Epigenet Chromatin 7:33

    Article  Google Scholar 

  • Wang A, Yue F, Li Y, Xie RY, Harper T, Patel NA, Muth K, Palmer J, Qiu YJ, Wang JZ et al (2015) Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. Cell Stem Cell 16:386–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yuan P, Yan Z, Yang M, Huo Y, Nie Y, Zhu X, Qiao J, Yan L (2021) Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos. Nat Commun 12:1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MD, Plachta N (2020) Specification of the first mammalian cell lineages in vivo and in vitro. Cold Spring Harb Perspect Biol 12:a035634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JY, Huang B, Chen H, Yin QZ, Liu Y, Xiang YL, Zhang BJ, Liu BF, Wang QJ, Xia WK et al (2016) The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534:652–657

    Article  CAS  PubMed  Google Scholar 

  • Xia WK, Xu JW, Yu G, Yao GD, Xu K, Ma XS, Zhang N, Liu BF, Li T, Lin ZL et al (2019) Resetting histone modifications during human parental-to-zygotic transition. Science 365:353–360

    Article  CAS  PubMed  Google Scholar 

  • Xiang YL, Zhang Y, Xu QH, Zhou C, Liu BF, Du ZH, Zhang K, Zhang BJ, Wang XX, Gayen S et al (2020) Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat Genet 52:95–105

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Xie W (2018) Epigenome in early mammalian development: inheritance, reprogramming and establishment. Trends Cell Biol 28:237–253

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Hu BQ, Hou Y, Qiao YB, Wang R, Chen YY, Qian Y, Feng S, Chen J, Liu C et al (2018) Silencing of developmental genes by H3K27me3 and DNA methylation reflects the discrepant plasticity of embryonic and extraembryonic lineages. Cell Res 28:593–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XF, Hu BQ, Liao JY, Qiao YB, Chen YY, Qian Y, Feng S, Yu F, Dong J, Hou Y et al (2019) Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Cell Res 29:911–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Tao X, Titus S, Zhao TH, Scott RT, Seli E (2020) Analysis of accessible chromatin landscape in the inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod 26:702–711

    Article  CAS  PubMed  Google Scholar 

  • Zhang TY, Cooper S, Brockdorff N (2015) The interplay of histone modifications—writers that read. EMBO Rep 16:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiang YL, Yin QZ, Du ZH, Peng X, Wang QJ, Fidalgo M, Xia WK, Li YY, Zhao ZA et al (2018) Dynamic epigenomic landscapes during early lineage specification in mouse embryos. Nat Genet 50:96–105

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Xie W (2019) The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 20:535–550

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Huang B, Zhang BJ, Xiang YL, Du ZH, Xu QH, Li YY, Wang QJ, Ma J, Peng X et al (2016) Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell 63:1066–1079

    Article  CAS  PubMed  Google Scholar 

  • Zhou F, Wang R, Yuan P, Ren YX, Mao YU, Li R, Lian Y, Li JS, Wen L, Yan LY et al (2019) Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572:660–664

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the members in Lin & Luo Lab for critical discussion. This work was financially supported by grants from the National Key R&D Program of China (2018YFA0800100 and 2018YFA0800101 to C.L.; 2018YFA0800104 to H.F.), the National Natural Science Foundation of China (32030017 and 31970626 to C.L.) and the Natural Science Foundation of Jiangsu Province (BK20201273 to H.F.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitong Fang or Chengqi Lin.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Luo, Z. & Lin, C. Epigenetic reorganization during early embryonic lineage specification. Genes Genom 44, 379–387 (2022). https://doi.org/10.1007/s13258-021-01213-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01213-w

Keywords

Navigation