Skip to main content

Advertisement

Log in

Priming hMSCs with a putative anti-cancer compound, myrtucommulone-a: a way to harness hMSC cytokine expression via modulating PI3K/Akt pathway?

  • Original Article
  • Published:
Tumor Biology

Abstract

Tumour microenvironment is a key factor for cancer growth and metastasis. Tumour surrounding tissue is known to include high number of mesenchymal stem cells which have been thought to have a role in regulating cancer cell behaviour via paracrine signalling. Therefore, modulating human mesenchymal stem cell (hMSC) secretome is highly significant for controlling and treating disease. Since common therapeutic agents are known to enhance cancer resistance, there is a strong urge to define novel agents for developing cell-based therapies. In the present study, we aimed at investigating the effect of active compounds, myrtucommulone-A (MC-A) and thymoquinone (TQ), on hMSC cytokine expression. Our data revealed that MC-A treatment have significantly altered cytokine expression in hMSCs. Upon MC-A treatment, hMSCs decreased the expression levels of various cytokines including TNF-α, VEGF, IL-6, IL-8 and FGF-2. hMSC conditioned medium (CM) primed with MC-A decreased the proliferation, migration ability and clonogenicity of bladder cancer cells and breast cancer cells in comparison to non-primed hMSC medium and hMSC medium primed with TQ. To the best of our knowledge, this study is the first report showing the effects of active compounds, MC-A and TQ, on hMSCs and therefore valuable for highlighting the potential use of active compounds in combination with hMSCs for cell-based targeted cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  2. Dorronsoro A, Fernández-Rueda J, Fechter K, Ferrin I, Salcedo JM, Jakobsson E, Trigueros C: Human mesenchymal stromal cell-mediated immunoregulation: mechanisms of action and clinical applications. Bone Marrow Res 2013;2013.

  3. Ramdasi S, Sarang S, Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int J Hematol Oncol Stem Cell Res. 2015;9:95–103.

    PubMed  PubMed Central  Google Scholar 

  4. Yu JM, Jun ES, Bae YC, Jung JS. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev. 2008;17:463–73.

    Article  CAS  PubMed  Google Scholar 

  5. Tian LL, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol. 2011;226:1860–7.

    Article  PubMed  Google Scholar 

  6. Luo J, Ok Lee S, Liang L, Huang CK, Li L, Wen S, et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene. 2014;33:2768–78.

    Article  CAS  PubMed  Google Scholar 

  7. Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, et al. Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumour Biol. 2014;35:1239–50.

    Article  CAS  PubMed  Google Scholar 

  8. Atsuta I, Liu S, Miura Y, Akiyama K, Chen C, An Y, et al. Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway. Stem Cell Res Ther. 2013;4:111.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013;31:146–55.

    Article  CAS  PubMed  Google Scholar 

  10. Lis R, Touboul C, Raynaud CM, Malek JA, Suhre K, Mirshahi M, et al. Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties. PLoS One. 2012;7, e38340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Halpern JL, Kilbarger A, Lynch CC. Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Lett. 2011;308:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao M, Sachs PC, Wang X, Dumur CI, Idowu MO, Robila V, et al. Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer resembling the basal-type. Cancer Biol Ther. 2012;13:782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandel K, Yang Y, Schambach A, Glage S, Otte A, Hass R. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem Cells Dev. 2013;22:3114–27.

    Article  CAS  PubMed  Google Scholar 

  14. Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29:11–9.

    Article  CAS  PubMed  Google Scholar 

  15. Scherzed A, Hackenberg S, Froelich K, Kessler M, Koehler C, Hagen R, et al. Bmsc enhance the survival of paclitaxel treated squamous cell carcinoma cells in vitro. Cancer Biol Ther. 2011;11:349–57.

    Article  CAS  PubMed  Google Scholar 

  16. Chen DR, Lu DY, Lin HY, Yeh WL. Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. Biomed Res Int. 2014;2014:532161.

    PubMed  PubMed Central  Google Scholar 

  17. Müller H, Paul M, Hartmann D, Huch V, Blaesius D, Koeberle A, et al. Total synthesis of myrtucommulone a. Angew Chem Int Ed Engl. 2010;49:2045–9.

    Article  PubMed  Google Scholar 

  18. Iskender B, Izgi K, Karaca H, Canatan H: Myrtucommulone-a treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9. J Nat Med 2015;[Epub ahead of print].

  19. Izgi K, Iskender B, Jauch J, Sezen S, Cakir M, Charpentier M, Canatan H, Sakalar C: Myrtucommulone-a induces both extrinsic and intrinsic apoptotic pathways in cancer cells. J Biochem Mol Toxicol 2015;[Epub ahead of print].

  20. Abukhader MM. Thymoquinone in the clinical treatment of cancer: fact or fiction? Pharmacogn Rev. 2013;14:117–20.

    Article  Google Scholar 

  21. Sakalar C, Yuruk M, Kaya T, Aytekin M, Kuk S, Canatan H. Pronounced transcriptional regulation of apoptotic and TNF-NF-kappa-b signaling genes during the course of thymoquinone mediated apoptosis in HeLa cells. Mol Cell Biochem. 2013;383:243–51.

    Article  CAS  PubMed  Google Scholar 

  22. Darakhshan S, Bidmeshki PA, Hosseinzadeh CA, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res. 2015;95-96C:138–58.

    Article  Google Scholar 

  23. Solchaga LA, Penick KJ, Welter JF: Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: Tips and tricks. Methods Mol Biol 2011;698.

  24. Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng Part B Rev. 2013;19:516–28.

    Article  CAS  PubMed  Google Scholar 

  25. Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P. Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta. 1836;2013:321–35.

    Google Scholar 

  26. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. 2014;35:3945–51.

    Article  CAS  PubMed  Google Scholar 

  27. Xu Q, Wang L, Li H, Han Q, Li J, Qu X, et al. Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β. Int J Oncol. 2012;41:959–68.

    CAS  PubMed  Google Scholar 

  28. Ye H, Cheng J, Tang Y, Liu Z, Xu C, Liu Y, et al. Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer. Cancer Invest. 2012;30:513–8.

    Article  CAS  PubMed  Google Scholar 

  29. Di GH, Liu Y, Lu Y, Liu J, Wu C, Duan HF. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One. 2014;9, e113572.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    Article  CAS  PubMed  Google Scholar 

  31. Chen DR, Lu DY, Lin HY, Yeh WL: Mesenchymal stem cell-induced doxorubicin resistance in triple negative breast cancer. Biomed Res Int 2014;2014.

  32. Wang M, Cai J, Huang F, Zhu M, Zhang Q, Yang T, et al. Pre-treatment of human umbilical cord-derived mesenchymal stem cells with interleukin-6 abolishes their growth-promoting effect on gastric cancer cells. Int J Mol Med. 2015;35:367–75.

    PubMed  Google Scholar 

  33. De Luca A, Lamura L, Gallo M, Maffia V, Normanno N. Mesenchymal stem cell-derived interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. J Cell Biochem. 2012;113:3363–70.

    Article  PubMed  Google Scholar 

  34. Ding G, Wang L, Xu H, Xu Z, Feng C, Ding Q, et al. Mesenchymal stem cells in prostate cancer have higher expressions of SDF-1, CXCR4 and VEGF. Gen Physiol Biophys. 2013;32:245–50.

    Article  PubMed  Google Scholar 

  35. Tu B, Du L, Fan QM, Tang Z, Tang TT. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett. 2012;325:80–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW, et al. Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res. 2013;319:2216–29.

    Article  CAS  PubMed  Google Scholar 

  37. Huang F, Wang M, Yang T, Cai J, Zhang Q, Sun Z, et al. Gastric cancer-derived MSC-secreted PDGF-DD promotes gastric cancer progression. J Cancer Res Clin Oncol. 2014;140:1835–48.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng J, Ye H, Liu Z, Xu C, Zhang Z, Liu Y, et al. Platelet-derived growth factor-bb accelerates prostate cancer growth by promoting the proliferation of mesenchymal stem cells. J Cell Biochem. 2013;114:1510–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hogan NM, Joyce MR, Murphy JM, Barry FP, O'Brien T, Kerin MJ, et al. Impact of mesenchymal stem cell secreted PAI-1 on colon cancer cell migration and proliferation. Biochem Biophys Res Commun. 2013;435:574–9.

    Article  CAS  PubMed  Google Scholar 

  40. Moustakas A, Heldin CH. Induction of epithelial-mesenchymal transition by transforming growth factor β. Semin Cancer Biol. 2012;22:446–54.

    Article  CAS  PubMed  Google Scholar 

  41. Oyanagi J, Kojima N, Sato H, Higashi S, Kikuchi K, Sakai K, et al. Inhibition of transforming growth factor-β signaling potentiates tumor cell invasion into collagen matrix induced by fibroblast-derived hepatocyte growth factor. Exp Cell Res. 2014;326:267–79.

    Article  CAS  PubMed  Google Scholar 

  42. Daly RJ, Carrick N, Darbre PD. Progression to steroid autonomy is accompanied by altered sensitivity to growth factors in S115 mouse mammary tumour cells. J Steroid Biochem Mol Biol. 1995;54:21–9.

    Article  CAS  PubMed  Google Scholar 

  43. Rosendahl AH, Forsberg G. IGF-i and IGFBP-3 augment transforming growth factor-beta actions in human renal carcinoma cells. Kidney Int. 2006;70:1584–90.

    Article  CAS  PubMed  Google Scholar 

  44. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappab activation. Nature. 2000;406:86–90.

    Article  CAS  PubMed  Google Scholar 

  45. Demarchi F, Bertoli C, Sandy P, Schneider C. Glycogen synthase kinase-3 beta regulates NF-kappa B1/p105 stability. J Biol Chem. 2003;278:39583–90.

    Article  CAS  PubMed  Google Scholar 

  46. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Graham JR, Tullai JW, Cooper GM. GSK-3 represses growth factor-inducible genes by inhibiting NF-kappaB in quiescent cells. J Biol Chem. 2010;285:4472–80.

    Article  CAS  PubMed  Google Scholar 

  48. Gong R, Rifai A, Ge Y, Chen S, Dworkin LD. Hepatocyte growth factor suppresses proinflammatory NFκB activation through GSK3β inactivation in renal tubular epithelial cells. J Biol Chem. 2008;283:7401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem. 2006;281:9971–6.

    Article  CAS  PubMed  Google Scholar 

  50. Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem. 2002;277:32124–32.

    Article  CAS  PubMed  Google Scholar 

  51. Cherla RP, Lee SY, Mulder RA, Lee MS, Tesh VL. Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infect Immun. 2009;77:3919–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84.

    Article  CAS  PubMed  Google Scholar 

  53. Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity. 2008;29:565–77.

    Article  CAS  PubMed  Google Scholar 

  54. Haidinger M, Poglitsch M, Geyeregger R, Kasturi S, Zeyda M, Zlabinger GJ, et al. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J Immunol. 2010;185:3919–31.

    Article  CAS  PubMed  Google Scholar 

  55. Chiang GG, Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem. 2005;280:25485–90.

    Article  CAS  PubMed  Google Scholar 

  56. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926–45.

    Article  CAS  PubMed  Google Scholar 

  57. Yonezawa K, Tokunaga C, Oshiro N, Yoshino K. Raptor, a binding partner of target of rapamycin. Biochem Biophys Res Commun. 2004;313:437–41.

    Article  CAS  PubMed  Google Scholar 

  58. Wang L, Harris TE, Roth RA, Lawrence JCJ. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282:20036–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Dr. Johann Jauch and Dr. Maël Charpentier (Institut für Organische Chemie der Universität des Saarlandes in Saarbrücken) for providing MC-A. This study was suppoted by the grants from the The Scientific and Technological Research Council of Turkey (No: 115S042, No: 114S542 and No: 113S927).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banu Iskender.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

The effects of conditioned media (hMSC CM, hMSC + MC-A CM, hMSC + TQ CM) on MDA-MB-231 clonogenicity and colony morphology. a Clonogenicity of highly aggressive human breast cancer cell line MDA-MB-231 was impaired upon hMSC + MC-A CM treatment. b The number of colonies formed was not affected from hMSC CM treatment in MDA-MB-231 cells as determined by measurement of the optical density of crystal violet staining. hMSC + TQ CM and hMSC + MC-A CM seemed to reduce clonogenicity of MDA-MB-231 cells. Error bars indicate mean ± SD (n = 2). *p < 0.05 vs MDA-MB-231 control; **p < 0.05 vs MDA-MB-231 control c MDA-MB-231 cells formed dispersed colonies and colony number but not colony morphology was affected from CM treatment. (PDF 8592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskender, B., Izgi, K., Sakalar, C. et al. Priming hMSCs with a putative anti-cancer compound, myrtucommulone-a: a way to harness hMSC cytokine expression via modulating PI3K/Akt pathway?. Tumor Biol. 37, 1967–1981 (2016). https://doi.org/10.1007/s13277-015-3995-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3995-9

Keywords

Navigation