Skip to main content

Advertisement

Log in

Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling

  • Original Article
  • Published:
Tumor Biology

Abstract

Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Quinta’s-Cardama A, Cortes JE. Molecular biology of bcr-abl1–positive chronic myeloid leukemia. Blood. 2009;113:1619–30.

    Article  Google Scholar 

  2. Deininger MVN, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–56.

    CAS  PubMed  Google Scholar 

  3. Salesse S, Verfaillie CM. BCR/ABL: from molecular mechanisms of leukemia induction to treatment of chronic myeloid leukemia. Oncogene. 2002;21:8547–59.

    Article  CAS  PubMed  Google Scholar 

  4. Melo JV, Chuah C. Novel agents in CML therapy: tyrosine kinase inhibitors and beyond. Hematology Am Soc Hematol Educ Program. 2008;2008:427–35.

    Google Scholar 

  5. Khan N, Afaq F, Syed DN, Mukhtar H. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis. 2008;29:1049–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev. 2014;8:122–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ravishankar D, Rajora AK, Greco F. Osborn HMFlavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013;45:2821–31.

    Article  CAS  PubMed  Google Scholar 

  8. Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal. 2013;19:151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim do Y, Park JH. Induction of p53 contributes to apoptosis of HCT-116 human colon cancer cells induced by the dietary compound fisetin. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1060–8.

    Article  CAS  PubMed  Google Scholar 

  10. Szliszka E, Helewski KJ, Mizgala E, Krol W. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int J Oncol. 2011;39:771–9.

    CAS  PubMed  Google Scholar 

  11. Murtaza I, Adhami VM, Hafeez BB, Saleem M, Mukhtar H. Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3 mediated inhibition of NF-κB. Int J Cancer. 2009;2:2465–73.

    Article  Google Scholar 

  12. Khan N, Afaq F, Khusro FH, Mustafa Adhami V, Suh Y, Mukhtar H. Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer. 2012;130:1695–705.

    Article  CAS  PubMed  Google Scholar 

  13. Jang KY, Jeong SJ, Kim SH, Jung JH, Kim JH, Koh W, et al. Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin induced apoptosis in multiple myeloma U266 cells. Cancer Lett. 2012;319:197–202.

    Article  CAS  PubMed  Google Scholar 

  14. Adhami VM, Syed DN, Khan N, Mukhtar H. Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol. 2012;84:1277–81.

    Article  CAS  PubMed  Google Scholar 

  15. Ash D, Subramanian M, Surolia A, Shaha C. Nitric oxide is the key mediator of death induced by fisetin in human acute monocytic leukemia cells. Am J Cancer Res. 2015;5:481–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pal HC, Baxter RD, Hunt KM, Agarwal J, Elmets CA, Athar M, Afaq F1. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget. 2015; [Epub ahead of print].

  17. Benavente-Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem. 2008;56:6185–205.

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen IL, Chee WS, Poulsen L, Offord-Cavin E, Rasmussen SE, Frederiksen H, et al. Bioavailability is improved by enzymatic modification ofthe citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J Nutr. 2006;136:404–8.

    CAS  PubMed  Google Scholar 

  19. Palit S, Kar S, Sharma G, Das PK. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol. 2015;230:1729–39.

    Article  CAS  PubMed  Google Scholar 

  20. Alshatwi AA, Ramesh E, Periasamy VS, Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27:581–92.

    Article  CAS  PubMed  Google Scholar 

  21. Sivagami G, Vinothkumar R, Bernini R, Preethy CP, Riyasdeen A, Akbarsha MA, et al. Role of hesperetin [a natural flavonoid] and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line-A comparative study. Food Chem Toxicol. 2012;50:660–71.

    Article  CAS  PubMed  Google Scholar 

  22. Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. 2007;59:115–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chen YC, Shen SC, Lin HY. Rutinoside at C7 attenuates the apoptosis-inducing activity of flavonoids. Biochem Pharmacol. 2003;66:1139–50.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Wu D, Vikash, Song J, Wang J, Yi J, Dong W. Hesperetin induces the apoptosis of gastric cancer cells via activating mitochondrial pathway by increasing reactive oxygen species. Dig Dis Sci. 2015, [Epub ahead of print].

  25. Can G, Ekiz A, Baran Y. Imatinib induces autophagy through BECLIN-1 and ATG5 genes in chronic myeloid leukemia cells. Hematology. 2011;16:95–9.

  26. Chen CM, Hsieh YH, Hwang JM, Jan HJ, Hsieh SC, Lin SH, et al. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increasedphosphorylation of ERK1/2. Tumour Biol. 2015;36:3407–15.

    Article  CAS  PubMed  Google Scholar 

  27. Solmaz S, Adan Gokbulut A, Cincin B, Ozdogu H, Boga C, Cakmakoglu B, et al. Therapeutic potential of apigenin, a plant flavonoid, for imatinib sensitive and resistant chronic myeloid leukemia cells. Nutr Cancer. 2014;66:599–612.

    Article  CAS  PubMed  Google Scholar 

  28. Lim do Y, Park JH. Induction of p53 contributes to apoptosis of HCT-116 human colon cancer cells induced by the dietary compound fisetin. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1060–8.

    Article  CAS  PubMed  Google Scholar 

  29. Szliszka E, Helewski KJ, Mizgala E, Krol W. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int J Oncol. 2011;39:771–9.

    CAS  PubMed  Google Scholar 

  30. Jang KY, Jeong SJ, Kim SH, Jung JH, Kim JH, Koh W, et al. Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin induced apoptosis in multiple myeloma U266 cells. Cancer Lett. 2012;319:197–202.

    Article  CAS  PubMed  Google Scholar 

  31. Monasterio A, Urdaci MC, Pinchuk IV, López-Moratalla N, Martínez-Irujo JJ. Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpain-dependent pathways. Nutr Cancer. 2004;50:90–100.

    Article  CAS  PubMed  Google Scholar 

  32. Kang KA, Piao MJ, Hyun JW. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. In Vitro Cell Dev Biol Anim. 2015;51:300–9.

    Article  CAS  PubMed  Google Scholar 

  33. Alshatwi AA, Ramesh E, Periasamy VS, Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27:581–92.

    Article  CAS  PubMed  Google Scholar 

  34. Sivagami G, Vinothkumar R, Bernini R, Preethy CP, Riyasdeen A, Akbarsha MA, et al. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line-A comparative study. Food Chem Toxicol. 2012;50:660–71.

    Article  CAS  PubMed  Google Scholar 

  35. Pal HC, Sharma S, Elmets CA, Athar M, Afaq F. Fisetin inhibits growth, induces G2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation. Exp Dermatol. 2013;22:470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu X, Jung J, Cho HJ, Lim DY, Lee HS, Chun HS, et al. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr. 2015;135:2884–90.

    Google Scholar 

  37. Haddad AQ, Venkateswaran V, Viswanathan L, Teahan SJ, Fleshner NE, Klotz LH. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis. 2006;9:68–76.

    Article  CAS  PubMed  Google Scholar 

  38. Li F, Sethi G. Targeting transcription factor NF-κB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta. 1805;2010:167–80.

    Google Scholar 

  39. Zhao X, Liu X, Su L. Parthenolide induces apoptosis via TNFRSF10B and PMAIP1 pathways in human lung cancer cells. J Exp Clin Cancer Res. 2014;33:1–11.

    Article  CAS  Google Scholar 

  40. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liebermann DA, Tront JS, Sha X, Mukherjee K, Hadley AM, Hoffman B. Gadd45 stress sensors in ,malignancy and leukemia. Crit Rev Oncog. 2011;16:129–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu DD, Chen YC, Zhang XR, Cao XR, Jiang HY, Yao L. The relationship between metallothionein-1F (MT1F) gene and hepatocellular carcinoma. Yale J Biol Med. 2003;76:55–62.

    PubMed  PubMed Central  Google Scholar 

  43. Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y, Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci. 2013;9:435–43.

    Article  PubMed  PubMed Central  Google Scholar 

  44. George OL, Ness SA. Situational awareness: regulation of the myb transcription factor in differentiation, the cell cycle and oncogenesis. Cancers (Basel). 2014;6:2049–71.

    Article  CAS  Google Scholar 

  45. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leandro-García LJ, Leskelä S, Landa I, Montero-Conde C, López-Jiménez E, Letón R, et al. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken). 2010;67:214–23.

    Article  Google Scholar 

  47. Gil-Araujo B, Toledo Lobo MV, Gutiérrez-Salmerón M, Gutiérrez-Pitalúa J, Ropero S, Angulo JC, et al. Dual specificity phosphatase 1 expression inversely correlates with NF-κB activity and expression in prostate cancer and promotes apoptosis through a p38 MAPK dependent mechanism. Mol Oncol. 2014;8:27–38.

    Article  CAS  PubMed  Google Scholar 

  48. Anisowicz A, Sotiropoulou G, Sager R. Re-expression of SPR1 in breast cancer cells by phorbol 12-myristate 13-acetate (PMA) or UV irradiation is mediated by the AP-1 binding site in the SPR1 promoter. Mol Med. 1999;5:526–41.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mona El Khatib for professional help with the English editing of the article.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Baran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adan, A., Baran, Y. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. Tumor Biol. 37, 5781–5795 (2016). https://doi.org/10.1007/s13277-015-4118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4118-3

Keywords

Navigation