Skip to main content

Advertisement

Log in

Landscape restoration in a mixed agricultural-forest catchment: Planning a buffer strip and hedgerow network in a Chilean biodiversity hotspot

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Guidance for large-scale restoration of natural or semi-natural linear vegetation elements that takes into account the need to maintain human livelihoods such as farming is often lacking. Focusing on a Chilean biodiversity hotspot, we assessed the landscape in terms of existing woody vegetation elements and proposed a buffer strip and hedgerow network. We used spatial analysis based on Google Earth imagery and QGIS, field surveys, seven guidelines linked to prioritization criteria and seedling availability in the region’s nurseries, and estimated the budget for implementing the proposed network. The target landscapes require restoring 0.89 ha km−2 of woody buffer strips to meet Chilean law; 1.4 ha km−2 of new hedgerows is also proposed. The cost of restoration in this landscape is estimated in ca. USD 6900 per planted ha of buffer strips and hedgerows. Financial incentives, education, and professional training of farmers are identified as key issues to implement the suggested restoration actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert, C.H., B. Rayfield, M. Dumitru, and A. Gonzalez. 2017. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conservation Biology 31: 1383–1396.

    Article  Google Scholar 

  • Alegre, J.C., and M.R. Rao. 1996. Soil and water conservation by contour hedging in the humid tropics of Peru. Agriculture, Ecosystems & Environment 57: 17–25.

    Article  Google Scholar 

  • Aviron, S., H. Nitsch, P. Jeanneret, S. Buholzer, H. Luka, L. Pfiffner, S. Pozzi, B. Schüpbach, et al. 2009. Ecological cross compliance promotes farmland biodiversity in Switzerland. Frontiers in Ecology and the Environment 7: 247–252.

    Article  Google Scholar 

  • Barral, P., J.M. Rey Benayas, P. Meli, and N. Maceira. 2015. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agriculture, Ecosystems & Environment 202: 223–231.

    Article  Google Scholar 

  • Benhamou, C., J. Salmon-Monviola, P. Durand, C. Grimaldi, and P. Merot. 2013. Modelling the interaction between fields and a surrounding hedgerow network and its impact on water and nitrogen flows of a small watershed. Agriculture and Water Management 121: 62–72.

    Article  Google Scholar 

  • Bommarco, R., D. Kleijn, and S.G. Potts. 2013. Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology & Evolution 28: 230–238.

    Article  Google Scholar 

  • Brussaard, L., P. Caron, B. Campbell, L. Lipper, S. Mainka, R. Rabbinge, D. Babin, and M. Pulleman. 2010. Reconciling biodiversity conservation and food security: Scientific challenges for a new agriculture. Current Opinion on Environmental Sustainability 2: 1–9.

    Article  Google Scholar 

  • Burel, F., and J. Baudry. 1995. Social, aesthetic and ecological aspects of hedgerows in rural landscapes as a framework for greenways. Landscape and Urban Planning 33: 327–340.

    Article  Google Scholar 

  • Burel, F., and J. Baudry. 2005. Habitat quality and connectivity in agricultural landscapes: The role of land use systems at various scales in time. Ecological Indicators 5: 305–313.

    Article  Google Scholar 

  • Cabin, R.J., A. Clewell, M. Ingram, T. McDonald, and V. Temperton. 2010. Bridging restoration science and practice: Results and analysis of a survey from the 2009 society for ecological restoration international meeting. Restoration Ecology 18: 783–788.

    Article  Google Scholar 

  • Correll, D.L. 2005. Principles of planning and establishment of buffer zones. Ecological Engineering 24: 433–439.

    Article  Google Scholar 

  • Crouzeilles, R., M. Curran, M.S. Ferreira, D.B. Lindenmayer, C.E.V. Grelle, and J.M. Rey Benayas. 2016. A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications 7: 11666.

    Article  CAS  Google Scholar 

  • Dainese, M., D.J. Inclán, T. Sitzia, and L. Marini. 2015. Testing scale-dependent effects of semi-natural habitats on farmland biodiversity. Ecological Applications 25: 1681–1690.

    Article  Google Scholar 

  • Dainese, M., S. Montecchiari, T. Sitzia, M. Sigura, and L. Marini. 2017. High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. Journal of Applied Ecology 54: 380–388.

    Article  Google Scholar 

  • Davies, Z.G., and A.S. Pullin. 2007. Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landscape Ecology 22: 333–351.

    Article  Google Scholar 

  • FAO. 2000. Global forest resources assessment 2000 (FRA 2000), Rome, Italy: FAO. http://www.fao.org/forest-resources-assessment/past-assessments/fra-2000/en/.

  • FAO. 2016. State of the World’s Forests 2016 (SOFO). Forests and agriculture: land use challenges and opportunities. Rome, Italy: FAO. http://www.fao.org/publications/sofo/2016/en/.

  • FAOSTATS. 2017. Food and agriculture data. Rome, Italy: FAOSTATS. http://www.fao.org/faostat/en/#home.

  • Fischer, J., D.J. Abson, A. Bergsten, N.F. Collier, I. Dorresteijn, J. Hanspach, K. Hylander, J. Schultner, et al. 2017. Reframing the food–biodiversity challenge. Trends in Ecology & Evolution 32: 335–345.

    Article  Google Scholar 

  • Forget, G., C. Carreau, D. Le Coeur, and I. Bernez. 2013. Ecological restoration of headwaters in a rural landscape (Normandy, France): A passive approach taking hedge networks into account for riparian tree recruitment. Restoration Ecology 21: 96–104.

    Article  Google Scholar 

  • Gatica-Saavedra, P., C. Echeverría, and C.R. Nelson. 2017. Ecological indicators for assessing ecological success of forest restoration: A world review. Restoration Ecology 25: 850–857.

    Article  Google Scholar 

  • Gelling, M., D.W. Macdonald, and F. Mathews. 2007. Are hedgerows the route to increased farmland small mammal density? Use of hedgerows in British pastoral habitats. Landscape Ecology 22: 1019–1032.

    Article  Google Scholar 

  • Groot, J.C.J., A. Jellema, and W.A.H. Rossing. 2010. Designing a hedgerow network in a multifunctional agricultural landscape: Balancing trade-offs among ecological quality, landscape character and implementation costs. European Journal of Agronomy 32: 112–119.

    Article  Google Scholar 

  • Gurrutxaga, M., P.J. Lozano, and G. del Barrio. 2010. GIS based approach for incorporating the connectivity of ecological networks into regional planning. Journal of Nature Conservation 18: 318–326.

    Article  Google Scholar 

  • Haddad, N.M., L.A. Brudvig, E.I. Damschen, D.M. Evans, B.L. Johnson, D.J. Levey, and J.L. Orrock. 2014. Potential negative ecological effects of corridors. Conservation Biology 28: 1178–1187.

    Article  Google Scholar 

  • Hallett, L.M., D.E. Chapple, N. Bickart, A. Cherbowsky, L. Fernandez, C.H. Ho, M. Alexander, K. Schwab, et al. 2017. Trait complementarity enhances native plant restoration in an invaded urban landscape. Ecological Restoration 35: 48–155.

    Article  Google Scholar 

  • Isaac, N.J.B., P.N.M. Brotherton, J.M. Bullock, R.D. Gregory, K. Boehning-Gaese, B. Connor, H.Q.P. Crick, R.P. Freckleton, et al. 2018. Defining and delivering resilient ecological networks: Nature conservation in England. Journal of Applied Ecology 55: 2537–2543. https://doi.org/10.1111/1365-2664.13196.

    Article  Google Scholar 

  • Jackson, L.E., U. Pascual, and T. Hodgkin. 2007. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agriculture, Ecosystems & Environment 121: 196–210.

    Article  Google Scholar 

  • Jones, H.P., P.C. Jones, E.B. Barbier, R.C. Blackburn, J.M. Rey Benayas, K.D. Holl, M. McCrackin, P. Meli, et al. 2018. Restoration and repair of Earth’s damaged ecosystems. Proceedings of the Royal Society B 285: 20172577.

    Article  Google Scholar 

  • Lara, A., M.E. Solari, M.R. Prieto, and M.P. Peña. 2012. Reconstrucción de la cobertura de la vegetación y uso del suelo hacia 1550 y sus cambios a 2007 en la ecorregión de los bosques valdivianos lluviosos de Chile (35°–43°30′S). Bosque 33: 13–23.

    Article  Google Scholar 

  • Legendre, P., and L. Legendre. 1998. Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • Lenka, N.K., A. Dass, S. Sudhishri, and U.S. Patnaik. 2012. Soil carbon sequestration and erosion control potential of hedgerows and grass filter strips in sloping agricultural lands of eastern India. Agriculture, Ecosystems & Environment 158: 31–40.

    Article  Google Scholar 

  • León, M.C., and C.A. Harvey. 2006. Live fences and landscape connectivity in a neotropical agricultural landscape. Agroforestry Systems 68: 15–26.

    Article  Google Scholar 

  • Lutz, M., and O. Bastian. 2002. Implementation of landscape planning and nature conservation in the agricultural landscape a case study from Saxony. Agriculture, Ecosystems & Environment 92: 159–170.

    Article  Google Scholar 

  • M’Gonigle, L.K., N.M. Williams, E. Lonsdorf, and C. Kremen. 2017. A tool for selecting plants when restoring habitat for pollinators. Conservation Letters 10: 105–111.

    Article  Google Scholar 

  • Maringanti, C., I. Chaubey, and J. Popp. 2009. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resources Research 45: W06406.

    Article  CAS  Google Scholar 

  • McCracken, M.E., B.A. Woodcock, M. Lobley, R.F. Pywell, E. Saratsi, R.D. Swetnam, S.R. Mortimer, S.J. Harris, et al. 2015. Social and ecological drivers of success in agri-environment schemes: the roles of farmers and environmental context. Journal of Applied Ecology 52: 696–705.

    Article  Google Scholar 

  • MEA (Millennium Ecosystem Assessment). 2005. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.

    Google Scholar 

  • Merckx, T., L. Marini, R.E. Feber, and D.W. Macdonald. 2012. Hedgerow trees and extended-width field margins enhance macro-moth diversity: Implications for management. Journal of Applied Ecology 49: 1396–1404.

    Article  Google Scholar 

  • Miranda, A., A. Altamirano, L. Cayuela, F. Pincheira, and A. Lara. 2015. Different times, same story: Native forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Applied Geography 60: 20–28.

    Article  Google Scholar 

  • Morandin, L.A., and C. Kremen. 2013. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecological Applications 23: 829–839.

    Article  Google Scholar 

  • Moreno-Mateos, D., C. Pedrocchi, and F.A. Comín. 2010. Effects of wetland construction on water quality in a semi-arid catchment degraded by intensive agricultural use. Ecological Engineering 36: 631–639.

    Article  Google Scholar 

  • Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  CAS  Google Scholar 

  • Nairn, R.J., and H. Decamps. 1997. The ecology of interfaces: Riparian zones. Annual Review of Ecology, Evolution and Systemarics 28: 621–658.

    Article  Google Scholar 

  • Oficina de Estudios y Políticas Agrarias (ODEPA). 2018. Boletín de Cereales. Santiago de Chile: Ministerio de Agricultura.

    Google Scholar 

  • Paletto, A., and M. Chincarini. 2012. Heterogeneity of linear forest formations: Differing potential for biodiversity conservation. A case study in Italy. Agroforestry Systems 86: 83–93.

    Article  Google Scholar 

  • Prevedello, J.A., J. Almeida-Gomes, and D.B. Lindenmayer. 2018. The importance of scattered trees for biodiversity conservation: A global meta-analysis. Journal of Applied Ecology 55: 205–214.

    Article  Google Scholar 

  • Pywell, R.F., M.S. Heard, B.A. Woodcock, S. Hinsley, L. Ridding, M. Nowakowski, and J.M. Bullock. 2015. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proceedings of the Royal Society B. 282: 2015174.

    Article  Google Scholar 

  • QGIS Development Team. 2004–2016. http://www.qgis.org.

  • Rey Benayas, J.M., and J.M. Bullock. 2015. Vegetation restoration and other actions to enhance wildlife in European agricultural landscapes. In Rewilding European landscapes, ed. H.M. Pereira and L.M. Navarro, 127–142. Cham: Springer.

    Google Scholar 

  • Rey Benayas, J.M., J.I. Gómez Crespo, and A.V. Mesa Fraile. 2016. Guía para la plantación de setos e islotes forestales en campos agrícolas mediterráneos. Madrid: Fundación Internacional para la Restauración de Ecosistemas. http://www.fundacionfire.org/images/pdf/guia%20restauracion_md.pdf.

  • Rey Benayas, J.M., and J.M. Bullock. 2012. Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15: 883–899.

    Article  Google Scholar 

  • Rey Benayas, J.M., J.M. Bullock, and A.C. Newton. 2008. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Frontiers in Ecology and the Environment 6: 329–336.

    Article  Google Scholar 

  • Romero, F.I., M.A. Cozano, R.A. Gangas, and P.I. Naulin. 2014. Zonas ribereñas: protección, restauración y contexto legal en Chile. Bosque 35: 3–12.

    Article  Google Scholar 

  • Schulz, J.J., and B. Schröder. 2017. Identifying suitable multifunctional restoration areas for Forest Landscape Restoration in Central Chile. Ecosphere 8: e01644.

    Article  Google Scholar 

  • Stanley, D.A., and J.C. Stout. 2013. Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: A field-scale evaluation reveals taxon-specific responses. Journal of Applied Ecology 50: 335–344.

    Article  Google Scholar 

  • Suárez-Esteban, A., M. Delibes, and J.M. Fedriani. 2013. Unpaved road verges as hotspots of fleshy-fruited shrub recruitment and establishment. Biological Conservation 167: 50–56.

    Article  Google Scholar 

  • Thompson, B.A. 2011. Planning for implementation: Landscape-level restoration planning in an agricultural setting. Restoration Ecology 19: 5–13.

    Article  Google Scholar 

  • Van Vooren, L., R. Bertb, S. Broekx, P. De Frenne, V. Nelissen, P. Pardon, and K. Verheyen. 2017. Ecosystem service delivery of agri-environment measures: A synthesis for hedgerows and grass strips on arable land. Agriculture, Ecosystems and the Environment 244: 32–51.

    Article  Google Scholar 

  • Wilkerson, M.L. 2014. Using hedgerows as model linkages to examine non-native plant patterns. Agriculture, Ecosystems and the Environment 192: 38–46.

    Article  Google Scholar 

  • Wortley, L., J.-M. Hero, and M. Howes. 2013. Evaluating ecological restoration success: A review of the literature. Restoration Ecology 21: 537–543.

    Article  Google Scholar 

  • WRI (World Resources Institute)/IUCN (International Union for Conservation of Nature). 2017. Atlas of forest and landscape restoration opportunities. http://www.wri.org/resources/maps/atlas-forest-and-landscape-restoration-opportunities.

  • Wu, Y., Q. Cai, C. Lin, Y. Chen, Y. Li, and X. Cheng. 2009. Responses of ground-dwelling spiders to four hedgerow species on sloped agricultural fields in Southwest China. Progress in Natural Sciences 13: 337–346.

    Article  Google Scholar 

  • Yang, D., T. Luo, T. Lin, Q. Qiu, and Y. Luo. 2014. Combining aesthetic with ecological values for landscape sustainability. PLoS ONE 9: e102437.

    Article  CAS  Google Scholar 

  • Zhao, Y., D. Feng, L. Yu, X. Wang, Y. Chen, Y. Bai, H.J. Hernández, M. Galleguillos, et al. 2016. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of the Environment 183: 170–185.

    Article  Google Scholar 

Download references

Acknowledgements

This study is the result of a collaboration funded by the “Attraction and insertion of advance human capital” Programme of the CONICYT (Chilean Ministry of Education) Project PAI80160058. Field work and GIS analysis were funded by Fondecyt Projects 1171445 and 1141294. We acknowledge additional support by the Spanish Ministry of Economy and Competitivity (project ref. CGL2014-53308-P), the government of Madrid (Project Reference S2013/MAE-2719 REMEDINAL-3) and by CEH National Capability funding (project NEC06429). A. M. thanks to CONICYT/Doctoral National Program/21140409. Three anonymous reviewers of a previous version of this manuscript helped to improve both its content and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Rey Benayas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 903 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey Benayas, J.M., Altamirano, A., Miranda, A. et al. Landscape restoration in a mixed agricultural-forest catchment: Planning a buffer strip and hedgerow network in a Chilean biodiversity hotspot. Ambio 49, 310–323 (2020). https://doi.org/10.1007/s13280-019-01149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-019-01149-2

Keywords

Navigation