Skip to main content
Log in

Histopathology of S. tanaceti infection in pyrethrum leaf lamina

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The infection process and life cycle of S. tanaceti in leaf lamina of pyrethrum plants was investigated using histopathology. Conidia attached firmly to the leaf surface before the infection hyphae penetrated directly into the epidermal cells of the leaf without forming appressoria. The maximum germination of conidia on leaf surface was 85 % at 54 HAI. Infection hyphae infected the epidermal and palisade parenchyma cells through the middle lamella. Brown lesions on the leaf were a result of infected necrotic epidermal cells. Extensive colonization through both intra- and intercellular hyphae along with pycnidia formation caused enormous damage to the infected cells at 12 DAI. Unlike the quadruple stain, both single and dual stains had very limited ability to visualise infection structures. These results have provided a better understanding of the physical interaction between the pathogen and the pyrethrum leaf tissues and will help to elucidate the complete disease cycle of S. tanaceti on pyrethrum plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Castell-Miller C, Zeyen R, Samac D (2007) Infection and development of Phoma medicaginis on moderately resistant and susceptible alfalfa genotypes. Can J Plant Pathol 29(3):290–298

  • Egger KN, Paden JW (1986) Biotrophic associations between lodgepole pine seedlings and post fire ascomycetes (Pezizales) in monoxenic culture. Can J Bot 64(11):2719–2725

    Article  Google Scholar 

  • Fogliano V, Marchese A, Scaloni A, Ritieni A, Visconti A, Randazzo G, Graniti A (1998) Characterization of a 60 kDa phytotoxic glycoprotein produced by Phoma tracheiphilaand its relation to malseccin. Physiol Mol Plant Pathol 53(3):149–161

    Article  CAS  Google Scholar 

  • Hammond KE, Lewis BG (1987) Variation in stem infections caused by aggressive and non-aggressive isolates of Leptosphaeria maculans on Brassica napus var. oleifera. Plant Pathol 36(1):53–65

    Article  Google Scholar 

  • Hammond KE, Lewis B, Musa T (1985) A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathol 34(4):557–565

    Article  Google Scholar 

  • Heald FD, Wolf FA (1911) New species of Texas fungi. Mycologia 3(1):5–22

    Article  Google Scholar 

  • Hitmi A, Coudret A, Barthomeuf C (2000) The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Biochem Mol Biol 35(5):317–337

    Article  CAS  PubMed  Google Scholar 

  • Idnurm A, Howlett BJ (2002) Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot Cell 1(5):719–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Knight NL, Sutherland MW (2011) A rapid differential staining technique for Fusarium pseudograminearum in cereal tissues during crown rot infections. Plant Pathol 60(6):1140–1143

    Article  Google Scholar 

  • Kulik M (1988) Observations by scanning electron and brightfield microscopy on the mode of penetration of soybean seedlings by Phomopsis phaseoli. Plant Dis 72:115–118

    Article  Google Scholar 

  • Liberato J, Barreto R, Shivas R (2005) Leaf-clearing and staining techniques for the observation of conidiophores in the Phyllactinioideae (Erysiphaceae). Australas Plant Pathol 34(3):401–404

    Article  Google Scholar 

  • Nicole M, Gianinazzi-Pearson V (1996) Histology, ultrastructure and molecular cytology of plant-microorganism interactions, 1st edn. Kluwer Academic Publishers, The Netherlands

    Book  Google Scholar 

  • Patton RF, Spear RN (1989) Histopathology of colonization in leaf tissue of Castilleja, Pedicularis, Phaseolus, and Ribes species by Cronartium ribicola. Phytopathology 9(5):539–547

    Article  Google Scholar 

  • Pedras MSC, Biesenthal CJ (2000) Vital staining of plant cell suspension cultures: evaluation of the phytotoxic activity of the phytotoxins phomalide and destruxin B. Plant Cell Rep 19(11):1135–1138

    Article  CAS  Google Scholar 

  • Pethybridge SJ, Wilson C (1998) Confirmation of ray blight disease of pyrethrum in Australia. Australas Plant Pathol 27(1):45–48

    Article  Google Scholar 

  • Pethybridge SJ, Hay FS, Esker PD, Gent DH, Wilson CR, Groom T, Nutter FW Jr (2008) Diseases of pyrethrum in Tasmania: challenges and prospects for management. Plant Dis 92(9):1260–1272

    Article  Google Scholar 

  • Pethybridge SJ, Gent DH, Groom T, Hay FS (2013) Minimizing crop damage through understanding relationships between pyrethrum phenology and ray blight disease severity. Plant Dis 97(11):1431–1437

    Article  Google Scholar 

  • Ranathunge N, Mongkolporn O, Ford R, Taylor P (2012) Colletotrichum truncatum Pathosystem on Capsicum spp: infection, colonization and defence mechanisms. Australas Plant Pathol 41(5):463–473

    Article  Google Scholar 

  • Ribichich KF, Lopez SE, Vegetti AC (2000) Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Dis 84(7):794–802

    Article  Google Scholar 

  • Roustaee A, Dechamp-Guillaume G, Gelie B, Savy C, Dargent R, Barrault G (2000) Ultrastructural studies of the mode of penetration by Phoma macdonaldii in sunflower seedlings. Phytopathology 90(8):915–920

    Article  CAS  PubMed  Google Scholar 

  • Sexton A, Howlett B (2001) Green fluorescent protein as a reporter in the Brassica–Leptosphaeria maculans interaction. Physiol Mol Plant Pathol 58(1):13–21

    Article  CAS  Google Scholar 

  • Solomon PS, Wilson TJG, Rybak K, Parker K, Lowe RGT, Oliver RP (2006) Structural characterization of the interaction between Triticum aestivum and the dothideomycete pathogen Stagonospora nodorum. Eur J Plant Pathol 114 (3): 275–282

  • Taylor PWJ, Burgess LW (1983) Histopathology of infection and colonisation of wheat by Fusarium graminearum Group 1. Proceedings of the 4th International Congress of Plant Pathology, Melbourne

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39(1):385–417

    Article  CAS  PubMed  Google Scholar 

  • Vaghefi N, Pethybridge S, Ford R, Nicolas M, Crous P, Taylor P (2012) Stagonosporopsis spp. associated with ray blight disease of Asteraceae. Australas Plant Pathol 41(6):675–686

    Article  Google Scholar 

  • Van De Graaf P, Joseph ME, Chartier-Hollis JM, O’Neill TM (2002) Prepenetration stages in infection of clematis by Phoma clematidina. Plant Pathol 51(3):331–337

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by Botanical Resources Australia Pty Ltd, Ulverstone, Tasmania

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. J. Taylor.

Appendix-i

Appendix-i

Sl

Reagents/ Stain

Compositions

1

V8 media

Sterile distilled water 271 mL, CaCO3 1.31 g, Agar 7 g and V8 juice 78.75 mL with adjusted pH at 6.25, then autoclave at 121 °C for 20 min.

2

FAA

10 % formalin, 5 % acetic acid, 50 % ethanol and 35 % sterile water

3

Lactophenol cotton blue solution

0.05 % cotton blue (w/v) in compositions of 20 % ethanol, 20 % lactic acid, 40 % glycerol and 20 % distilled sterile water

4

Safranin O

100 mL methyl cello solve, 50 mL absolute ethanol, 50 mL DI water, 2 g sodium acetate, 4 mL 37 % formalin, 2 g Safranin O powder (Sigma- S 2255 100 g).

5

Fast Green FCF

0.25 g Fast Green powder (Sigma- F 7252 5 g) in 50 mL (1:1) methyl cello solve: clove oil (Sigma C 8392 500 mL), 150 mL absolute ethanol, 150 mL tert-butanol (100 %) and 3.5 mL glacial acetic acid

6

Orange G

1 g Orange G powder (Sigma O 3756 25 g) in 200 mL methyl cello solve in 100 mL absolute ethanol

 7

Crystal Violet

1 g Crystal violet powder (Sigma C-6158 100 g) in 100 mL sterile distilled water

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.A.H.B., Groom, T., Nicolas, M.E. et al. Histopathology of S. tanaceti infection in pyrethrum leaf lamina. Australasian Plant Pathol. 44, 629–636 (2015). https://doi.org/10.1007/s13313-015-0377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-015-0377-0

Keywords

Navigation