Skip to main content
Log in

Identification of novel Ascochyta lentis resistance in a global lentil collection using a focused identification of germplasm strategy (FIGS)

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The Australian lentil breeding program is historically genetically narrow and recent reports suggests a loss of resistance to Ascochyta lentis within resistant cultivars such as Northfield and Nipper. There is evidence that the pathogen population is becoming more virulent on other widely adopted cultivars, thus there is an urgent need to identify novel resistance sources that may be transferred into the cultigen. To reduce the substantial economic and time commitment in this search, a Focused Identification of Germplasm Strategy (FIGS) was applied. This entailed exploring potential association between collection site environment and climatic conditions favouring A. lentis development, to predict regions imposing favourable selection towards A. lentis resistance. Accordingly, a subset of 87 landraces (originating from 16 countries) with highest likelihood for A. lentis resistance was selected from 4576 accessions held by the International Centre for Agricultural Research in the Dry Areas (ICARDA), Morrocco collection. Significant variation for resistance was detected within the subset using completely randomized and replicated controlled climate bioassays with a highly virulent Australian A. lentis isolate, FT13037. Genotype IG 207 expressed the lowest percent area of symptomatic tissue and a further 12 genotypes demonstrated moderate resistance. Furthermore, IG 207 recorded lowest mean disease score against four other highly aggressive isolates and performed better than the currently used best resistance sources, ILL 7537 and Indianhead. In addition, delayed pre-penetration behaviour of isolate FT13038 on IG 207 leaflets indicated discovery through the FIGS technique of a novel and highly effective A. lentis resistance source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali S (1995) Register of Australian grain legume cultivars. Lens culinaris (lentil) cv. Northfield. Aust J Exp Agric 35:1181–1182

    Article  Google Scholar 

  • Bari A, Street K, Mackay M, Endresen DTF, De Pauw E, Amri A (2012) Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genet Resour Crop Evol 59:1465–1481

    Article  Google Scholar 

  • Bari A, Amri A, Street K et al (2014) Predicting resistance to stripe (yellow) rust (Puccinia striiformis) in wheat genetic resources using focused identification of germplasm strategy. J Agric Sci 152:906–916

    Article  Google Scholar 

  • Bayaa B, Erskine W, Hamdi A (1994) Response of wild lentil to Ascochyta fabae f. sp lentis from Syria. Genet Resour Crop Evol 41:61–65

    Article  Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci 106:9519–9524

    Article  PubMed  Google Scholar 

  • Biradar C (2016a) Geospatial Science, Technology and Applications at ICARDA. In Geospatial Opportunities and Rural Convening, Bill and Melinda Gates Foundation, Sep 6–8, 2016. Seattle, WA, US

  • Biradar C (2016b) Resilient and efficient agro-ecosystems under changing climate and demography. World Water Meet 2016, UASD. Oct 24–26, 2016. Dharwad, India

  • El Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet Resour Crop Evol 56:1065, 1069

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Dadu RH, Ford R, Sambasivam P, Gupta D (2017) A novel Lens orientalis resistance source to the recently evolved highly aggressive Australian Ascochyta lentis isolates. Front Plant Sci 8:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Dadu RH, Ford R, Sambasivam P, Gupta D (2018) Evidence of early defence to Ascochyta lentis within the recently identified Lens orientalis resistance source ILWL 180. Plant Pathol 67:1492–1501. https://doi.org/10.1111/ppa.12851

    Article  CAS  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751. https://doi.org/10.1126/science.1236011

    Article  PubMed  CAS  Google Scholar 

  • Davidson J, Smetham G, Russ MH, McMurray L, Rodda M, Krysinska-Kaczmarek M, Ford R (2016) Changes in aggressiveness of the Ascochyta lentis population in southern Australia. Front Plant Sci 7:393. https://doi.org/10.3389/fpls.2016.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Dita M, Brommonschenkel S, Matsuoka K, Mizubuti E (2007) Histopathological study of the Alternaria solani infection process in potato cultivars with different levels of early blight resistance. J Phytopathol 155:462–469

    Article  Google Scholar 

  • El Bouhssini M, Street K, Amri A et al (2011) Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the focused identification of germplasm strategy (FIGS). Plant Breed 130:96–97. https://doi.org/10.1111/j.1439-0523.2010.01814.x

    Article  Google Scholar 

  • El Bouhssini M, Ogbonnaya F, Chen M, Lhaloui S, Rihawi F, Dabbous A (2013) Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect pests: hessian fly, Russian wheat aphid and Sunn pest in the fertile crescent. Genet Resour Crop Evol 60:621–627

    Article  CAS  Google Scholar 

  • FAOSTAT (2016) Food and agriculture Organization of the United Nations (FAO) statistical division. Available online at: http://www.fao.org/faostat/en/#data/QC. Accessed 28 May 2018

  • Ford R, Pang E, Taylor P (1999) Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. TAG Theor Appl Genet 98:93–98

    Article  CAS  Google Scholar 

  • Ford R, Garnier-Géré P, Nasir M, Taylor P (2000) Structure of Ascochyta lentis in Australia revealed with random amplified polymorphic DNA (RAPD) markers. Australas Plant Pathol 29:36–45

    Article  Google Scholar 

  • Global Crop Diversity Trust (2008) Global strategy for the ex situ conservation of lentil (LensMiller), Available at http://www.croptrust.org/documents/web/LensStrategy_FINAL_3Dec08.pdf

  • Gossen BD, Morrall RAA (1983) Effect of ascochyta blight on seed yield and quality of lentils. Can J Plant Pathol 5:168–173. https://doi.org/10.1080/07060668309501620

    Article  Google Scholar 

  • Gupta D, Taylor PWJ, Inder P, Phan HTT, Ellwood SR, Mathur PN, Sarker A, Ford R (2012) Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to ascochyta blight at seedling and pod stages. Mol Breed 30:429–439. https://doi.org/10.1007/s11032-011-9634-2

    Article  CAS  Google Scholar 

  • Hussain S, Nasir M, Bretag T (2000) Lentil, germplasm evaluation for resistance against ascochyta blight caused by Ascochyta lentis. Pakistan Journal of Agricultural Research (Pakistan)

  • Iqbal SM, Ghafoor A, Ali S, Ahmad I (2010) Identification of resistant source of ascochyta blight from local lentil germplasm. Pakasitan Journal of Phytopathology 22:29–33

    Google Scholar 

  • Kaiser WJ, Hannan RM, Rogers JD (1994) Factors affecting growth and sporulation of Ascochyta fabae f.sp lentis. Plant disease 78:374–379

    Article  Google Scholar 

  • Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (focused identification of germplasm strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS One 8:e63107. https://doi.org/10.1371/journal.pone.0063107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khorramdelazad M, Bar I, Whatmore P, Smetham G, Bhaaskaria V, Yang Y, Bai SH, Mantri N, Zhou Y, Ford R (2018) Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics 19:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lancashire PD, Bleiholder HT et al (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  • Lin W, Bradshaw AD et al (1975) The potential for evolution of heavy metal tolerance in plants. 3. The rapid evolution of copper tolerance in Agrostis stolonifera. Heredity 34:165–187

    Article  Google Scholar 

  • Lopez F, Kay A (2017) Fungicide resistance in grain crops, GRDC update papers. Curtin University, Perth, WA

    Google Scholar 

  • Mackay M (1990) Strategic planning for effective evaluation of plant germplasm. In: Wheat genetic resources: meeting diverse needs. John Wiley & Sons, pp 21–348

  • Martin SH, Steenkamp ET, Wingfield MJ, Wingfield BD (2013) Mate - recognition and species boundaries in ascomycetes. Fungal Divers 58:1–12. https://doi.org/10.1007/s13225-012-0217-2

    Article  Google Scholar 

  • Morrall RAA, Sheppard JW (1981) Ascochyta blight of lentils in western Canada: 1978 to 1980. Can Plant Dis Surv

  • Muehlbauer FJ, Chen W (2007) Resistance to ascochyta blights of cool season food legumes. Eur J Plant Pathol 119:135–141. https://doi.org/10.1007/s10658-007-9180-2

    Article  Google Scholar 

  • Murray GM, Brennan JP (2012) The current and potential costs from diseases of pulse crops in Australia. Grains Research and Development Cooperation, Canberra

  • Nasir M, Bretag T (1998) Reactions of lentil accessions from 25 different countries to Australian isolates of Ascochyta lentis. Genet Resour Crop Evol 45:297–299

    Article  Google Scholar 

  • Nguyen T, Taylor P, Brouwer J, Pang E, Ford R (2001) A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight caused by Ascochyta lentis. Australas Plant Pathol 30:211–215

    Article  Google Scholar 

  • De Pauw E, Nachtergaele FO, Antoine J, Fisher G, Velthuizen HTV (1996) A provisional world climatic resource inventory based on the length-of-growing-period concept. National soil reference collections and databases (NASREC) 30–43

  • Pedersen E, Morrall R (1994) Effects of cultivar, leaf wetness duration, temperature, and growth stage on infection and development of Ascochyta blight of lentil. Phytopathology 84:1024–1030

    Article  Google Scholar 

  • Sambasivam P, Taylor PWJ, Ford R (2016) Pathogenic variation and virulence related responses of Ascochyta lentis on lentil. Eur J Plant Pathol 147:265–277. https://doi.org/10.1007/s10658-016-0999-2

    Article  Google Scholar 

  • Sari E (2014) Genetics of Resistance to Ascochyta Blight in Lentil. Dissertation, University of Sasketchwan

  • Sari E, Bhadauria V, Vandenberg A, Banniza S (2017) Genotype-dependent interaction of lentil lines with Ascochyta lentis. Front Plant Sci 8:764

    Article  PubMed  PubMed Central  Google Scholar 

  • Sari E, Bhadauria V, Ramsay L, Borhan MH, Lichtenzveig J, Bett KE et al (2018) Defense responses of lentil (Lens culinaris) genotypes carrying non-allelic ascochyta blight resistance genes to Ascochyta lentis infection. PLoS One 9:e0204124

    Article  CAS  Google Scholar 

  • Singh G, Singh K, Gill AS, Brar JS (1982) Screening of lentil varieties/lines for blight resistance. Indian. Phytopathology 35:678–679

    Google Scholar 

  • Singh M, Bisht IS, Kumar S, Dutta M, Bansal KC, Karale M, Sarker A, Amri A, Kumar S, Datta SK (2014) Global wild annual Lens collection: a potential resource for lentil Genetic Base broadening and yield enhancement. PLoS One 9. https://doi.org/10.1371/journal.pone.0107781

  • Skiba B, Pang EC (2003) Mating trials and genetic study of virulence in Ascochyta lentis to the lentil cultivar'Northfield'. Aust J Agric Res 54:453–460

    Article  Google Scholar 

  • Street K, Mackay M, Zuev E, Kaul N, El Bouhssini M, Konopka J, Mitrofanova O (2008) Swimming in the genepool-a rational approach to exploiting large genetic resource collections. In Proceedings of the 11th International Wheat Genetics Symposium (Eds R. Appels, R. Eastwood, E. Lagudah, P. Langridge, M. Mackay, L. Mcintyre & P. Sharp), pp. 28–31. Brisbane, Australia: Sydney University Press

  • Sudheesh S, Rodda MS, Davidson J, Javid M, Stephens A, Slater AT et al (2016) SNP-based linkage mapping for validation of QTLs for resistance to ascochyta blight in lentil. Front Plant Sci 7:1604

    Article  PubMed  PubMed Central  Google Scholar 

  • Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Article  Google Scholar 

  • Tullu A, Kusmenoglu I, McPhee KE, Muehlbauer FJ (2001) Characterization of core collection of lentil germplasm for phenology, morphology seed and straw yields. Genet Resour Crop Evol 48:143–152

    Article  Google Scholar 

  • Tullu A, Banniza S, Tar’an B, Warkentin T, Vandenberg A (2010) Sources of resistance to ascochyta blight in wild species of lentil (Lens culinaris Medik.). Genet Resour Crop Evol 57:1053–1063. https://doi.org/10.1007/s10722-010-9547-7

    Article  Google Scholar 

  • Vavilov NI (1957) Mirovye resurcy sortov chlebnych zlakov, zernovych bobovych, l’na i ich ispol’zovanie v selekcii. Opyt agroklimatičeskogo obozrenija važnejŝich polevych kultur. [World resources of cereals, grain leguminous crops and flax and their utilization in plant breeding. Agroecological survey of the principal field crops]. Izdatel’stvo Akademii Nauk SSR, Moskva, Leningrad, 463 p. (In Russian)

  • Ye G, McNeil D, Hill G, Zydenbos S Inheritance of resistance to Ascochyta blight in lentil. In: New Zealand Plant Prot Volume 54, 2001. Proceedings of a conference, Quality Hotel, Palmerston North, New Zealand, 14–16 August 2001., 2001. New Zealand Plant Prot Society, pp 198–201

Download references

Acknowledgements

We wish to thank The University of Melbourne and the Victorian Government for the Victoria-India Doctoral Scholarship (VIDS) and Melbourne International Fee Remission Scholarship (MIFRS) to Rama Harinath Reddy Dadu to support this work at The University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadu, R.H.R., Ford, R., Sambasivam, P. et al. Identification of novel Ascochyta lentis resistance in a global lentil collection using a focused identification of germplasm strategy (FIGS). Australasian Plant Pathol. 48, 101–113 (2019). https://doi.org/10.1007/s13313-018-0603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-018-0603-7

Keywords

Navigation