Skip to main content
Log in

Epidemiology and management of blackleg of canola in response to changing farming practices in Australia

  • Review
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The Australian canola industry was established in the 1970s and has expanded since that time, particularly in the last two decades. This review addresses the changes in farming practices since the year 2000 and the epidemiological and management consequences for blackleg, caused by the fungus Leptosphaeria maculans, the main disease impacting Brassica napus production. To help understand the change in production practices, a survey of over 100 growers and agronomists was conducted. Modern management practices include increased crop residue retention, frequency of canola in crop sequences, number of resistance genes in cultivars, use of hybrids and fungicides as well as earlier sowing and flowering times. While some of the changes identified in the survey and in this review increase the risk and severity of disease, including new symptoms like upper canopy infection, others provide novel strategies for control. Keeping these changes in mind, a set of research priorities towards long term sustainable management of blackleg disease are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agresti A (2010) Analysis of ordinal categorical data, vol 656. Wiley, New York

    Google Scholar 

  • Angus JF, Kirkegaard JA, Hunt JR, Ryan MH, Ohlander L, Peoples MB (2015) Break crops and rotations for wheat. Crop Pasture Sci 66:523–552

    Google Scholar 

  • Avenot HF, Sellam A, Michailides TJ (2009) Characterisation of mutations in the membrane-anchored AaSDHC and AaSDHD of succinate dehydrogenase from Alternaria alternata isolates conferring field resistance to the fungicide boscalid. Plant Pathol 58:1134–1143

    CAS  Google Scholar 

  • Balesdent MH, Barbetti MJ, Li H, Sivasithamparam K, Gout L, Rouxel T (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology 95(9):1061–1071

    CAS  PubMed  Google Scholar 

  • Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chevre AM, Leflon M, Rouxel T (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol 198(3):887–898

    CAS  PubMed  Google Scholar 

  • Bell LW, Dove H, McDonald SE, Kirkegaard JA (2015) Integrating dual-purpose wheat and canola into high rainfall livestock systems in South-Eastern Australia. 3. An extrapolation to whole-farm grazing potential, productivity and profitability. Crop Pasture Sci 66(4):390–398

    Google Scholar 

  • Bousset L, Sprague SJ, Thrall PH, Barrett LG (2018) Spatio-temporal connectivity and host resistance influence evolutionary and epidemiological dynamics of the canola pathogen Leptosphaeria maculans. Evol Appl 11:1354–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt SA, Malhi SS, Ulrich D, Lafond GP, Kutcher AM (2007) Seedling rate, fertilizer level and disease management effects on hybrid versus open pollinated canola (Brassica napus L.). Can J Plant Sci 87:255–266

    Google Scholar 

  • Brun H, Chevre AM, Fitt BD, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185(1):285–299

    PubMed  Google Scholar 

  • Christensen RHB (2019) Ordinal—regression models for ordinal data. vol 2019.12-10. R package

  • Cook R (2000) Advances in plant health management in the twentieth century. Annu Rev Phytopathol 38:95–116

    CAS  PubMed  Google Scholar 

  • Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crop Res 104:103–111

    Google Scholar 

  • Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent MH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583

    CAS  PubMed  Google Scholar 

  • Delourme R, Chevre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114(1):41–52

    Google Scholar 

  • Dooley H, Shaw MW, Mehenni-Ciz J, Spink J, Kildea S (2016) Detection of Zymoseptoria tritici SDHI-insensitive field isolates carrying the SdhC-H152R and SdhD-R47W substitutions. Pest Manag Sci 72:2203–2207

    CAS  PubMed  Google Scholar 

  • Elliott VL, Marcroft SJ, Howlett BJ, Van de Wouw AP (2016) Gene-for-gene resistance is expressed in cotyledons, leaves and pods in the Leptosphaeria maculans-Brassica napus pathosystem but not during stem colonisation. Plant Breed 135:200–207

    CAS  Google Scholar 

  • Fischer T, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increase continue to feed the world? Paper presented at the ACIAR Monographs, Canberra

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114(1):3–15

    Google Scholar 

  • Flor HH (1955) Host-parasite interactions in flax rust - its genetic and other implications. Phytopathology 45(12):680–685

    Google Scholar 

  • Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Bernard-Samain S, Balesdent MH, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Mol Plant-Microbe Interact 20(4):459–470

    CAS  PubMed  Google Scholar 

  • Ghanbarnia K, Lydiate DJ, Rimmer SR, Li G, Kutcher R, Larkan NJ, McVetty PBE, Fernando DWG (2012) Genetic mapping of the Leptosphaeria maculans avirulence gene corresponding to the LepR1 resistance gene of Brassica napus. Theor Appl Genet 124:505–513

    CAS  PubMed  Google Scholar 

  • Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent M, Profotova B, Fernando DWG, Rouxel T, Borhan H (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Mol Plant Pathol 16:699–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanbarnia K, Ma L, Larkan NJ, Haddadi P, Fernando DWG, Borhan MH (2018) Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. Mol Plant Pathol 19(7):1754–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gladders P, Evans N, Marcroft S, Pinochet X (2006) Dissemination of information about management strategies and changes in farming practices for the exploitation of resistance to Leptosphaeria maculans (phoma stem canker) in oilseed rape cultivars. Eur J Plant Pathol 114:117–126

    Google Scholar 

  • Gossende S, Penaud A, Aubertot JN, Schneider O, Pinochet X (2003) Evolution of soil surface oilseed rape residues and their ability to produce spores of Leptosphaeria maculans: preliminary results. In: 11th International Rapeseed Congress, Copenhagen, Denmark

  • Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel T (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60(1):67–80

    CAS  PubMed  Google Scholar 

  • Gunstone F (2004) Rapeseed and canola oil: production, processing, properties and use. Wiley-Blackwell, Oxford

    Google Scholar 

  • Hammond KE, Lewis BG (1987) Differential responses of oilseed rape leaves to Leptosphaeria maculans. Trans Br Mycol Soc 88:329–333

    Google Scholar 

  • Hammond KE, Lewis BG, Musa TM (1985) A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathol 34:557–565

    Google Scholar 

  • Harker KN, O'Donovan JT, Turkington TK, Blackshaw RE, Lupwayi NZ, Smith EG, Johnson EN, Gan Y, Kutcher HR, Dosdall LM, Peng G (2015) Canola rotation frequency impacts canola yield and associated pest species. Can J Plant Sci 95:9–20

    Google Scholar 

  • Hegewald H, Koblenz B, Wensch-Dorendorf M, Christen O (2017) Yield, yield formation, and blackleg disease of oilseed rape cultivated in high-intensity crop rotations. Arch Agron Soil Sci 63:1785–1799

    CAS  Google Scholar 

  • Holzworth DP, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, Verrall S, Herrmann NI, Zheng B, Snow V (2018) APSIM next generation: overcoming challenges in modernising a farming systems model. Environ Model Softw 103:43–51

    Google Scholar 

  • Huang Y, Paillard S, Kumar V, King G, Fitt B, Delourme R (2019) Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants. PLoS One 14(9):e0222540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen B (1997) Role of plant pathology in integrated pest management. Annu Rev Phytopathol 35:373–391

    CAS  PubMed  Google Scholar 

  • Khangura R, Barbetti M (2002) Efficacy of impact to manage blackleg (Leptosphaeria maculans) in canola. Aust J Agric Res 53:311–321

    CAS  Google Scholar 

  • Khangura R, Barbetti M (2004) Time of sowing and fungicides affect blackleg (Leptosphaeria maculans) severity and yield in canola. Aust J Exp Agric 44:1205–1213

    CAS  Google Scholar 

  • Kirkegaard JA, Sprague SJ, Hamblin P, Graham J, Lilley JM (2012) Refining crop and livestock management for dual-purpose canola (Brassica napus). Crop Pasture Sci 63:429–443

    Google Scholar 

  • Kirkegaard JA, Lilley JM, Brill RD, Sprague SJ, Fettell NA, Pengilley GC (2016a) Re-evaluating sowing time of spring canola (Brassica napus L.) in South-Eastern Australia - how early is too early? Crop Pasture Sci 67:381–396

    Google Scholar 

  • Kirkegaard JA, Lilley JM, Morrison MJ (2016b) Drivers of trends in Australian canola productivity andd future prospects. Crop Pasture Sci 67:i–ix

    Google Scholar 

  • Kirkegaard JA, Lilley JM, Brill RD, Ware AH, Walela CK (2018) The critical period for yield and quality determination in canola (Brassica napus L.). Field Crop Res 222:180–188

    Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IA, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605

    CAS  PubMed  Google Scholar 

  • Larkan NJ, Ma L, Borhan H (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol J 13:983–992

    CAS  PubMed  Google Scholar 

  • Larkan NJ, Raman H, Lydiate DJ, Robinson SJ, Yu F, Barbulescu DM, Raman R, Luckett D, Burton W, Wratten N, Salisbury P, Rimmer R, Borhan MH (2016) Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. BMC Plant Biol 16:183

    PubMed  PubMed Central  Google Scholar 

  • Lilley JM, Bell LW, Kirkegaard JA (2015) Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 2. Canola. Crop Pasture Sci 66(4):349–364. https://doi.org/10.1071/CP14240

  • Lilley JM, Flohr BM, Whish JPM, Farre I, Kirkegaard JA (2019) Defining optimal sowing and flowering periods for canola in Australia. Field Crop Res 235:118–128

    Google Scholar 

  • Marcroft SJ, Potter TD (2008) The fungicide fluquinconazole applied as a seed dressing to canola reduces Leptosphaeria maculans (blackleg) severity in South-Eastern Australia. Australas Plant Pathol 37:396–401

    CAS  Google Scholar 

  • Marcroft SM, Sprague SJ, Pymer SJ, Salisbury P, Howlett BJ (2003) Factors affecting the production of inoculum of the blackleg fungus (Leptosphaeria maculans) in South-Eastern Australia. Aust J Exp Agric 43:1231–1236

    Google Scholar 

  • Marcroft SJ, Sprague SJ, Pymer SJ, Salisbury PA, Howlett BJ (2004) Crop isolation, not extended rotation length, reduces blackleg (Leptosphaeria maculans) severity of canola (Brassica napus) in South-Eastern Australia. Aust J Exp Agric 44:601–606

    Google Scholar 

  • Marcroft SJ, Sosnowski MR, Scott ES, Ramsey MD, Salisbury PA, Howlett BJ (2005) Brassica napus plants infected by Leptosphaeria maculans after the third to fifth leaf growth stage in South-Eastern Australia do not develop blackleg stem canker. Eur J Plant Pathol 112:289–292

    Google Scholar 

  • Marcroft SJ, Van de Wouw AP, Salisbury PA, Potter TD, Howlett BJ (2012) Rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes decreases disease severity. Plant Pathol 61:934–944

    CAS  Google Scholar 

  • McCredden J, Cowley RB, Marcroft SJ, Van de Wouw AP (2018) Changes in farming practices impact on spore release patterns of the blackleg pathogen, Leptosphaeria maculans. Crop Pasture Sci 69:1–8

    Google Scholar 

  • McGee C, Emmett RW (1977) Blackleg (Leptosphaeria maculans (Desm.) Ces. Et de not.) of rapeseed in Victoria: crop losses and factors which affect disease severity. Aust J Agric Res 28:47–51

    Google Scholar 

  • Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, Rouxel T (2009) Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Mol Microbiol 71(4):851–863

    CAS  PubMed  Google Scholar 

  • Peng G, Liu X, McLaren DL, McGregor L, Fengqun Y (2020) Seed treatment with the fungicide fluopyram limits cotyledon infection by Leptosphaeria maculans and reduces blackleg of canola. Can J Plant Pathol (in press)

  • Petit-Houdent Y, Degrave A, Meyer M, Blaise F, Ollivier B, Marais CL, Jauneau A, Audran C, Rivas S, Veneault-Fourrey C, Brun H, Rouxel T, Fudal I, Balesdent MH (2019) A two genes-for-one gene interaction between Leptosphearia maculans and Brassica napus. New Phytol 223:397–411. https://doi.org/10.1111/nph.15762

    Article  CAS  Google Scholar 

  • Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent M (2016) A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol 209(4):1613–1624

    CAS  PubMed  Google Scholar 

  • Plissonneau C, Rouxel T, Chevre AM, Van de Wouw AP, Balesdent MH (2017) One gene-one name: the AvrLmJ1 avirulence gene of Leptosphaeria maculans is AvrLm5. Mol Plant Pathol 19(4):1012–1016

    PubMed  PubMed Central  Google Scholar 

  • Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125(2):405–418

    CAS  PubMed  Google Scholar 

  • Raman H, Raman R, Coombes N, Song J, Diffey S, Klilian A, Lindbeck K, Barbulescu DM, Batley J, Edwards D, Salisbury PA, Marcroft SJ (2016) Genome-wide association study identified new loci for resistance to Leptosphaeria maculans in canola. Front Plant Sci 7:1513

    PubMed  PubMed Central  Google Scholar 

  • Raman H, Raman R, Diffey S, Qiu Y, McVittie B, Barbulescu DM, Salisbury P, Marcroft S, Delourme R (2018) Stable quantitative resistance loci to blackleg disease in canola (Brassica napus L.) over continents. Frontiers in. Plant Sci 9:1622

    Google Scholar 

  • Raman R, Diffey S, Barbulescu DM, Coombes N, Luckett D, Salisbury P, Cowley RB, Marcroft S, Raman H (2020) Genetic and physical mapping of loci for resistance to blackleg disease in canola (Brassica napus L.). Sci Rep 10:4416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent MH (2003) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur J Plant Pathol 109(8):871–881

    CAS  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GH, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent MH, Howlett BJ (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2:n202

    Google Scholar 

  • Salisbury P, Ballinger DJ, Wratten N, Plummer KM, Howlett BJ (1995) Blackleg disease on oilseed Brassicas in Australia - a review. Aust J Exp Agric 35:665–674

    Google Scholar 

  • Sprague SJ, Balesdent MH, Brun H, Hayden HL, Marcroft SJ, Pinochet X, Rouxel T, Howlett BJ (2006a) Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. Eur J Plant Pathol 114:33–44

    Google Scholar 

  • Sprague SJ, Marcroft SJ, Hayden HL, Howlett BJ (2006b) Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia. Plant Dis 90(2):190–198

    CAS  PubMed  Google Scholar 

  • Sprague SJ, Kirkegaard JA, Graham J, Bell L, Seymour M, Ryan M (2015) Forage and grain yield of diverse canola maturity types (Brassica napus) in the high rainfall zone of Australia. Crop Pasture Sci 66:260–274

    Google Scholar 

  • Sprague SJ, Graham J, Brill R, McMaster C (2017) Early-flowering canola - what is the blackleg risk? Paper presented at the 18th Australian agronomy conference, Ballarat, Victoria, Australia

  • Sprague SJ, Marcroft SJ, Lindbeck KD, Ware AH, Khangura RK, Van de Wouw AP (2018) Detection, prevalence and severity of upper canopy infection on mature Brassica napus plants caused by Leptosphaeria maculans. Crop Pasture Sci 69:65–78

    Google Scholar 

  • Stuthmann DD, Leonard JJ, Miller-Garvin J (2007) Breeding crops for durable resistance to disease. Adv Agron 95:319–367

    Google Scholar 

  • Team RC (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Umbers A (2016) GRDC farm practices survey report 2016. Grains Research and Development Corporation, Kingston

    Google Scholar 

  • Van de Wouw AP, Howlett BJ (2012) Estimating frequencies of virulent isolates in field populations of a plant pathogenic fungus, Leptosphaeria maculans, using high-throughput pyrosequencing. J Appl Microbiol 113:1145–1153

    CAS  PubMed  Google Scholar 

  • Van de Wouw AP, Howlett BJ (2020) Advances in understanding the Leptosphaeria maculans - Brassica pathosystem and their impact on disease management. Can J Plant Pathol 42(2):149–163

    Google Scholar 

  • Van de Wouw AP, Marcroft SJ, Barbetti MJ, Hua L, Salisbury PA, Gout L, Rouxel T, Howlett BJ, Balesdent MH (2009) Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with 'sylvestris-derived' resistance suggests involvement of two resistance genes. Plant Pathol 58(2):305–313

    Google Scholar 

  • Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ (2010) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog 6(11):e1001180

    PubMed  PubMed Central  Google Scholar 

  • Van de Wouw AP, Lowe RGT, Elliott CE, Dubois DJ, Howlett BJ (2014) An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Mol Plant Pathol 15(5):523–530

    CAS  PubMed  Google Scholar 

  • Van de Wouw AP, Marcroft SJ, Howlett BJ (2016) Blackleg disease of canola in Australia. Crop Pasture Sci 67:273–282

    Google Scholar 

  • Van de Wouw AP, Elliott VL, Chang S, López-Ruiz F, Marcroft SJ, Idnurm A (2017) Identification of isolates of the plant pathogen Leptosphaeria maculans with resistance to the triazole fungicide fluquinconazole using a novel in planta assay. PLoS One 12:e0188106

    PubMed  PubMed Central  Google Scholar 

  • Veloukas T, Leroch M, Hahn M, Karaoglanidis GS (2011) Detection and molecular characterisation of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Dis 95:1302–1307

    CAS  PubMed  Google Scholar 

  • Verdon-Kidd DC, Kiem AS, Moran R (2014) Links between the big dry in Australia and hemishperic multi-decadal climate variability - implications for water resource management. Hydrol Earth Syst Sci 18:2235–2256

    Google Scholar 

  • West JS, Kharbanda PD, Barbetti M, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27

    Google Scholar 

  • Yang Y, Marcroft SJ, Forsyth LM, Zhao J, Ziqin L, Van de Wouw AP, Idnurm A (2020) Sterol demethylation inhibitor fungicide resistance in Leptosphaeria maculans is caused by modifications in the regulatory region of ERG11. Plant Dis 104:1280–1290

    CAS  PubMed  Google Scholar 

  • Zhang X, Fernando DWG (2018) Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Pasture Sci 69(1):40–47

    Google Scholar 

  • Zhang X, White RP, Demir E, Jedryczka M, Lange RM, Islam M, Li ZQ, Huang YJ, Hall AM, Zhou G, Wang Z, Cai X, Skelsey P, Fitt BDL (2014) Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathol 63:598–612

    Google Scholar 

  • Zhang H, Berger JD, Seymour M, Brill R, Herrmann C, Quinlan R, Knell G (2016a) Relative yield and profit of Australian hybrid compared with open-pollinated canola is largely determined by growing-season rainfall. Crop Pasture Sci 67(4):323–331

    Google Scholar 

  • Zhang X, Peng G, Kutcher HR, Balesdent MH, Delourme R, Fernando DWG (2016b) Breakdown of Rlm3 resistance in the Brassica napus-Leptosphaeria maculans pathosystem in western Canada. Eur J Plant Pathol 145:659–674

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the participants of the survey and those that promoted participation, and John Kirkegaard for comments on the manuscript. This work was supported by the Australian Grains Research and Development Corporation (project UM00051) and Australian Research Council (LP170100548). We thank Andrew Ware, Kurt Lindbeck, Ravjit Khangura, Andrew Wherrett, Andrea Hills, Jenny Davidson and Vicki Elliott for help with collection of disease severity data between 2004 and 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela P. Van de Wouw.

Supplementary information

ESM 1

(PDF 1.20 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Wouw, A.P., Marcroft, S.J., Sprague, S.J. et al. Epidemiology and management of blackleg of canola in response to changing farming practices in Australia. Australasian Plant Pathol. 50, 137–149 (2021). https://doi.org/10.1007/s13313-020-00767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-020-00767-9

Keywords

Navigation