Skip to main content
Log in

Permeation and metabolism of cocaine in the nasal mucosa

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

The rapid onset of psychostimulatory effects of cocaine following intranasal administration suggests either extremely rapid absorption into the bloodstream or the potential for cocaine’s access to the suggested direct nose-to-brain transport pathway. Cocaine transport was measured across excised bovine olfactory and respiratory mucosa to investigate site-specific uptake of cocaine. Flux in both the mucosal-to-submucosal (J m–s) and submucosal-to-mucosal (J s–m) directions across normal, 2, 4-dinitrophenol (2, 4-DNP) exposed, and de-epithelialized tissues increased linearly with increasing cocaine concentration, and no significant differences (p < 0.05) in directional permeability were observed for each condition. Some metabolism of cocaine to benzoylecgonine was observed, both in full-thickness and de-epithelialized tissues, demonstrating the activity of the submucosal tissues, in addition to the epithelial cell layer, in determining the disposition of cocaine. Results indicate that cocaine is transported across the nasal mucosa predominantly via passive diffusion, and no significant differences were observed between transport behaviors in the olfactory and nasal respiratory tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhat R, Chari G, Rao M, Negrusz A, Vidyasagar D (2001) Cocaine permeability and metabolism in colonic T-84 epithelial cell line. Life Sci 70(5):549–556

    Article  PubMed  CAS  Google Scholar 

  • Carey RJ, DePalma G (1995) A simple, rapid HPLC method for the concurrent measurement of cocaine and catecholamines in brain tissue samples. J Neurosci Meth 58(1–2):25–28

    Article  CAS  Google Scholar 

  • Chow HH, Anavy N, Villalobos A (2001) Direct nose-brain transport of benzoylecgonine following intranasal administration in rats. J Pharm Sci 90(11):1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Chow H-H, Chen Z, Matsuura GT (1999) Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci 88(8):754–758

    Article  PubMed  CAS  Google Scholar 

  • Das Gupta V (1982) Stability of cocaine hydrochloride solutions at various pH values as determined by high-pressure liquid chromatography. Int J Pharm 10:249–257

    Article  CAS  Google Scholar 

  • Daws LC, Callaghan PD, Moron JA, Kahlig KM, Shippenberg TS, Javitch JA, Galli A (2002) Cocaine increases dopamine uptake and cell surface expression of dopamine transporters. Biochem Biophys Res Commun 290(5):1545–1550

    Article  PubMed  CAS  Google Scholar 

  • Dhuria SV, Hanson LR, Frey WH II (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673

    PubMed  CAS  Google Scholar 

  • Einer-Jensen N, Larsen L (2000) Local transfer of diazepam, but not of cocaine, from the nasal cavities to the brain arterial blood in rats. Pharmacol Toxicol 87(6):276–278

    Article  PubMed  CAS  Google Scholar 

  • Farid JM, Abdullah AA (1986) Cocaine hydrochloride. In: Florey K (ed) Analytical profiles of drug substances, vol 15. Academic Press, New York, 151–231

  • Fernandez P, Rodriguez P, Bermejo AM, Lopez-Rivadulla M, Cruz A (1994) Simultaneous determination of cocaine and benzoylecgonine in vitreous humor by HPLC. J Liq Chromatogr 17(4):883–890

    Article  CAS  Google Scholar 

  • Frederick CB, Udinsky JR, Finch L (1994) The regional hydrolysis of ethyl acrylate to acrylic acid in the rat nasal cavity. Toxicol Lett 70(1):49–56

    Article  PubMed  CAS  Google Scholar 

  • Jackson RT, Hersey SJ (1991) Interaction of cocaine with nasal mucosa. Arch Otolaryngol 117(9):975–979

    Article  CAS  Google Scholar 

  • Lang S, Rothen-Rutishauser B, Perriard J-C, Schmidt MC, Merkle HP (1998) Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa. Peptides 19(3):599–607

    Article  PubMed  CAS  Google Scholar 

  • Lantz RC, Orozco J, Bogdanffy MS (2003) Vinyl acetate decreases intracellular pH in rat nasal epithelial cells. Toxicol Sci 75(2):423–431

    Article  PubMed  CAS  Google Scholar 

  • Mainwaring G, Foster JR, Lund V, Green T (2001) Methyl methacrylate toxicity in rat nasal epithelium: studies of the mechanism of action and comparisons between species. Toxicology 158(3):109–118

    Article  PubMed  CAS  Google Scholar 

  • Marini S, Longo V, Mazzaccaro A, Gervasi PG (1998) Xenobiotic-metabolizing enzymes in pig nasal and hepatic tissues. Xenobiotica 28(10):923–935

    Article  PubMed  CAS  Google Scholar 

  • Nikula KJ, Novak RF, Chang IY, Dahl AR, Kracko DA, Zangar RC, Kim SG, Lewis JL (1995) Induction of nasal carboxylesterase in F344 rats following inhalation exposure to pyridine. Drug Metab Dispos 23(5):529–535

    PubMed  CAS  Google Scholar 

  • Resel E, Martinez-Sanz E, Gonzalez I, Trinidad E, Garcillan B, Amoros M, Gonzalez-Meli B, Lagaron E, Murillo J, Del RA, Lopez M, Martinez-Alvarez C (2007) In vitro manipulation of cleft palate connective tissue: setting the bases of a proposed new treatment. J Surg Res 138(1):111–120

    Article  PubMed  Google Scholar 

  • Sato H, Nave R, Nonaka T, Mochizuki T, Takahama S, Kondo S (2007) In vitro activation of the corticosteriod ciclesonide in animal nasal mucosal homogenates. Biopharm Drug Dispos 28:59–64

    Article  PubMed  CAS  Google Scholar 

  • Trela BA, Bogdanffy MS (1991) Carboxylexterase-dependent cytotoxicity of dibasic esters (DBE) in rat nasal explants. Toxicol Appl Pharmacol 107:285–301

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang G-J, Fischman MW, Foltin R, Fowler JS, Franceschi D, Logan J, Gatley SJ, Wong C, Ding Y-S, Hitzemann R, Pappas N (2000) Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci 67(12):1507–1515

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Altamirano CV, Bartels CF, Speirs RJ, Cashman JR, Lockridge O (1999) An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient. Mol Pharmacol 55(1):83–91

    PubMed  CAS  Google Scholar 

  • Yang C, Gao H, Mitra AK (2001) Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of acyclovir. J Pharm Sci 90(5):617–624

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Schmidt M, Murry DJ, Donovan MD (2011) Permeation and systemic absorption of R- and S-baclofen across the nasal mucosa. J Pharm Sci 100(7):2717–2723

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen D. Donovan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Prisinzano, T.E. & Donovan, M.D. Permeation and metabolism of cocaine in the nasal mucosa. Eur J Drug Metab Pharmacokinet 37, 255–262 (2012). https://doi.org/10.1007/s13318-012-0085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-012-0085-x

Keywords

Navigation