Skip to main content
Log in

Metabolomics of Methylphenidate and Ethylphenidate: Implications in Pharmacological and Toxicological Effects

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Methylphenidate (MPH) is primarily indicated for attention-deficit hyperactivity disorder and narcolepsy therapy. A marked individual variability in the dose–response has been observed, and therefore dosage must be titrated for optimal therapeutic effect with minimal toxicity. This variability has been claimed to be predominantly pharmacokinetic. Moreover, due to its similar pharmacodynamics to amphetamine, MPH has been abused and fatalities have been reported. This review aims to discuss metabolomics of MPH, namely by presenting all major and minor metabolites. Ritalinic acid is the main metabolite. In addition, minor pathways involving aromatic hydroxylation, microsomal oxidation and conjugation have also been reported to form the p-hydroxy-, oxo- and conjugated metabolites, respectively. MPH may undergo transesterification with ethanol producing ethylphenidate, which is also pharmacologically active. It is expected that knowing the metabolomics of MPH may provide further insights regarding individual contribution for MPH pharmacodynamics and toxicological effects, namely if ethanol is co-consumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Scharman EJ, Erdman AR, Cobaugh DJ, Olson KR, Woolf AD, Caravati EM, et al. Methylphenidate poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila). 2007;45:737–52.

    Article  CAS  PubMed  Google Scholar 

  2. Capp PK, Pearl PL, Conlon C. Methylphenidate HCl: therapy for attention deficit hyperactivity disorder. Expert Rev Neurother. 2005;5:325–31.

    Article  CAS  PubMed  Google Scholar 

  3. Heal DJ, Pierce DM. Methylphenidate and its isomers: their role in the treatment of attention-deficit hyperactivity disorder using a transdermal delivery system. CNS Drugs. 2006;20:713–38.

    Article  CAS  PubMed  Google Scholar 

  4. Patrick KS, Caldwell RW, Ferris RM, Breese GR. Pharmacology of the enantiomers of threo-methylphenidate. J Pharmacol Exp Ther. 1987;241:152–8.

    CAS  PubMed  Google Scholar 

  5. Elia J, Wilson Z, La Porta LS, Algon SA, Prowler ML, Cartwright ST, et al. Methylphenidate transdermal system: clinical applications for attention-deficit/hyperactivity disorder. Expert Rev Clin Pharmacol. 2011;4:311–28.

    Article  CAS  PubMed  Google Scholar 

  6. Markowitz JS, Patrick KS. Differential pharmacokinetics and pharmacodynamics of methylphenidate enantiomers: does chirality matter? J Clin Psychopharmacol. 2008;28:S54–61.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang C, Luo H, Wu Y, Zhang J, Zhang F, Lin G, et al. Development and validation of an UFLC-MS/MS method for enantioselectivity determination of d,l-threo-methylphenidate, d,l-threo-ethylphenidate and d,l-threo-ritalinic acid in rat plasma and its application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1011:45–52.

    Article  CAS  PubMed  Google Scholar 

  8. Frolich J, Banaschewski T, Dopfner M, Gortz-Dorten A. An evaluation of the pharmacokinetics of methylphenidate for the treatment of attention-deficit/hyperactivity disorder. Expert Opin Drug Metab Toxicol. 2014;10:1169–83.

    Article  PubMed  Google Scholar 

  9. Schep LJ, Slaughter RJ, Beasley DM. The clinical toxicology of metamfetamine. Clin Toxicol (Phila). 2010;48:675–94.

    Article  CAS  PubMed  Google Scholar 

  10. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998;94:127–52.

    Article  CAS  PubMed  Google Scholar 

  11. Masellis M, Basile VS, Kennedy JL. Neuropsychopharmacogenetics: ‘stimulating’ rationale therapy in attention-deficit/hyperactivity disorder (ADHD): pharmacogenetics of psychostimulants in ADHD. In: Gorwood P, Hamon M, editors. Psychopharmacogenetics. Boston: Springer US; 2006. p. 231–48.

    Chapter  Google Scholar 

  12. Hitri A, Hurd YL, Wyatt RJ, Deutsch SI. Molecular, functional and biochemical characteristics of the dopamine transporter: regional differences and clinical relevance. Clin Neuropharmacol. 1994;17:1–22.

    Article  CAS  PubMed  Google Scholar 

  13. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, et al. Blockade of striatal dopamine transporters by intravenous methylphenidate is not sufficient to induce self-reports of “high”. J Pharmacol Exp Ther. 1999;288:14–20.

    CAS  PubMed  Google Scholar 

  14. Volkow ND, Wang GJ, Fowler JS, Fischman M, Foltin R, Abumrad NN, et al. Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain. Life Sci. 1999;65:PL7–12.

    Article  CAS  PubMed  Google Scholar 

  15. Harris J. Is it acceptable for people to take methylphenidate to enhance performance? Yes. BMJ (Clinical Research ed). 2009;338:b1955.

    Article  Google Scholar 

  16. Massello W 3rd, Carpenter DA. A fatality due to the intranasal abuse of methylphenidate (Ritalin). J Forensic Sci. 1999;44:220–1.

    Article  PubMed  Google Scholar 

  17. Dinis-Oliveira RJ. Licit and illicit uses of medicines. Acta Med Port. 2014;27:755–66.

    Article  PubMed  Google Scholar 

  18. Hysek CM, Simmler LD, Schillinger N, Meyer N, Schmid Y, Donzelli M, et al. Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol. 2014;17:371–81.

    Article  CAS  PubMed  Google Scholar 

  19. Dinis-Oliveira RJ. Metabolomics of drugs of abuse: a more realistic view of the toxicological complexity. Bioanalysis. 2014;6:3155–9.

    Article  CAS  PubMed  Google Scholar 

  20. Williard RL, Middaugh LD, Zhu HJ, Patrick KS. Methylphenidate and its ethanol transesterification metabolite ethylphenidate: brain disposition, monoamine transporters and motor activity. Behav Pharmacol. 2007;18:39–51.

    Article  CAS  PubMed  Google Scholar 

  21. Kimko HC, Cross JT, Abernethy DR. Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet. 1999;37:457–70.

    Article  CAS  PubMed  Google Scholar 

  22. Wada M, Abe K, Ikeda R, Kikura-Hanajiri R, Kuroda N, Nakashima K. HPLC determination of methylphenidate and its metabolite, ritalinic acid, by high-performance liquid chromatography with peroxyoxalate chemiluminescence detection. Anal Bioanal Chem. 2011;400:387–93.

    Article  CAS  PubMed  Google Scholar 

  23. Wigal SB, Gupta S, Greenhill L, Posner K, Lerner M, Steinhoff K, et al. Pharmacokinetics of methylphenidate in preschoolers with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol. 2007;17:153–64.

    Article  PubMed  Google Scholar 

  24. Ding YS, Fowler JS, Volkow ND, Gatley SJ, Logan J, Dewey SL, et al. Pharmacokinetics and in vivo specificity of [11C]dl-threo-methylphenidate for the presynaptic dopaminergic neuron. Synapse (New York, NY). 1994;18:152–60.

    Article  CAS  Google Scholar 

  25. Faraj BA, Israili ZH, Perel JM, Jenkins ML, Holtzman SG, Cucinell SA, et al. Metabolism and disposition of methylphenidate-14C: studies in man and animals. J Pharmacol Exp Ther. 1974;191:535–47.

    CAS  PubMed  Google Scholar 

  26. Thai DL, Yurasits LN, Rudolph GR, Perel JM. Comparative pharmacokinetics and tissue distribution of the d-enantiomers of para-substituted methylphenidate analogs. Drug Metab Dispos. 1999;27:645–50.

    CAS  PubMed  Google Scholar 

  27. Chan YP, Swanson JM, Soldin SS, Thiessen JJ, Macleod SM, Logan W. Methylphenidate hydrochloride given with or before breakfast: II. Effects on plasma concentration of methylphenidate and ritalinic acid. Pediatrics. 1983;72:56–9.

    CAS  PubMed  Google Scholar 

  28. Bartlett MF, Egger HP. Disposition an metabolism of methylphenidate in dog and man. Fed Proc Fed Am Soc Exp Biol Chem. 1972;31:537.

    Google Scholar 

  29. Markowitz JS, Yu G. Stimulants and other non-stimulants for attention-deficit/hyperactivity disorder (ADHD). In: Jann WM, Penzak RS, Cohen JL, editors. Applied clinical pharmacokinetics and pharmacodynamics of psychopharmacological agents. Cham: Springer International Publishing; 2016. p. 303–27.

    Chapter  Google Scholar 

  30. Hubbard JW, Srinivas NR, Quinn D, Midha KK. Enantioselective aspects of the disposition of dl-threo-methylphenidate after the administration of a sustained-release formulation to children with attention deficit-hyperactivity disorder. J Pharm Sci. 1989;78:944–7.

    Article  CAS  PubMed  Google Scholar 

  31. Sun Z, Murry DJ, Sanghani SP, Davis WI, Kedishvili NY, Zou Q, et al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1A1. J Pharmacol Exp Ther. 2004;310:469–76.

    Article  CAS  PubMed  Google Scholar 

  32. Merali Z, Ross S, Pare G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact. 2014;29:143–51.

    Article  CAS  PubMed  Google Scholar 

  33. Patrick KS, Straughn AB, Reeves OT 3rd, Bernstein H, Bell GH, Anderson ER, et al. Differential influences of ethanol on early exposure to racemic methylphenidate compared with dexmethylphenidate in humans. Drug Metab Dispos. 2013;41:197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet. 2008;82:1241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu HJ, Appel DI, Peterson YK, Wang Z, Markowitz JS. Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: potential sources of metabolic drug interactions. Toxicology. 2010;270:59–65.

    Article  CAS  PubMed  Google Scholar 

  36. Egger H, Bartlett F, Dreyfuss R, Karliner J. Metabolism of methylphenidate in dog and rat. Drug Metab Dispos. 1981;9:415–23.

    CAS  PubMed  Google Scholar 

  37. Patrick KS, Kilts CD, Breese GR. Synthesis and pharmacology of hydroxylated metabolites of methylphenidate. J Med Chem. 1981;24:1237–40.

    Article  CAS  PubMed  Google Scholar 

  38. Bentley J, Snyder F, Brown SD, Brown RW, Pond BB. Sex differences in the kinetic profiles of d- and l- methylphenidate in the brains of adult rats. Eur Rev Med Pharmacol Sci. 2015;19:2514–9.

    CAS  PubMed  Google Scholar 

  39. Dinis-Oliveira RJ. Metabolomics of cocaine: implications in toxicity. Toxicol Mech Meth. 2015;25:494–500.

    CAS  Google Scholar 

  40. Patrick KS, Williard RL, VanWert AL, Dowd JJ, Oatis JE Jr, Middaugh LD. Synthesis and pharmacology of ethylphenidate enantiomers: the human transesterification metabolite of methylphenidate and ethanol. J Med Chem. 2005;48:2876–81.

    Article  CAS  PubMed  Google Scholar 

  41. Markowitz JS, Logan BK, Diamond F, Patrick KS. Detection of the novel metabolite ethylphenidate after methylphenidate overdose with alcohol coingestion. J Clin Psychopharmacol. 1999;19:362–6.

    Article  CAS  PubMed  Google Scholar 

  42. Maskell PD, Smith PR, Cole R, Hikin L, Morley SR. Seven fatalities associated with ethylphenidate. Forensic Sci Int. 2016;265:70–4.

    Article  CAS  PubMed  Google Scholar 

  43. Godfrey J. Safety of therapeutic methylphenidate in adults: a systematic review of the evidence. J Psychopharmacol. 2009;23:194–205.

    Article  CAS  PubMed  Google Scholar 

  44. Portoghese PS, Malspeis L. Relative hydrolytic rates of certain alkyl (b) dl-α-(2-piperidyl)-phenylacetates. J Pharm Sci. 1961;50:494–501.

    Article  CAS  PubMed  Google Scholar 

  45. Dinis-Oliveira RJ, Carvalho F, Duarte JA, Remiao F, Marques A, Santos A, et al. Collection of biological samples in forensic toxicology. Toxicol Mech Meth. 2010;20:363–414.

    Article  CAS  Google Scholar 

  46. Negreira N, Erratico C, van Nuijs ALN, Covaci A. Identification of in vitro metabolites of ethylphenidate by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal. 2016;117:474–84.

    Article  CAS  PubMed  Google Scholar 

  47. Purper-Ouakil D, Ramoz N, Lepagnol-Bestel A-M, Gorwood P, Simonneau M. Neurobiology of attention deficit/hyperactivity disorder. Pediatr Res. 2011;69:69R–76R.

    Article  PubMed  Google Scholar 

  48. Dinis-Oliveira RJ. Metabolomics of methadone: clinical and forensic toxicological implications and variability of dose response. Drug Metab Rev. 2016;1–9. doi:10.1080/03602532.2016.1192642.

Download references

Acknowledgments

Ricardo Dinis-Oliveira acknowledges Fundação para a Ciência e a Tecnologia (FCT) for his Investigator Grant (IF/01147/2013). This work was supported by FEDER under Program PT2020 (project 007265-UID/QUI/50006/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Jorge Dinis-Oliveira.

Ethics declarations

Funding

No external source of funding and writing assistance was utilized in the production of this manuscript.

Conflict of interest

The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinis-Oliveira, R.J. Metabolomics of Methylphenidate and Ethylphenidate: Implications in Pharmacological and Toxicological Effects. Eur J Drug Metab Pharmacokinet 42, 11–16 (2017). https://doi.org/10.1007/s13318-016-0362-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0362-1

Keywords

Navigation