Skip to main content

Advertisement

Log in

Antiviral responses of arthropod vectors: an update on recent advances

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adelman ZN, Anderson MA, Liu M, Zhang L, Myles KM. Sindbis virus induces the production of a novel class of endogenous siRNAs in Aedes aegypti mosquitoes. Insect Mol Biol. 2012;21:357–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, et al. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science. 2010;330:86–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Arias-Goeta C, Mousson L, Rougeon F, Failloux AB. Dissemination and transmission of the E1-226V variant of chikungunya virus in Aedes albopictus are controlled at the midgut barrier level. PLoS One. 2013;8:e57548.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Arnot CJ, Gay NJ, Gangloff M. Molecular mechanism that induces activation of Spatzle, the ligand for the Drosophila Toll receptor. J Biol Chem. 2010;285:19502–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Asgari S. MicroRNA functions in insects. Insect Biochem Mol Biol. 2013;43:388–97.

    CAS  PubMed  Google Scholar 

  6. Attarzadeh-Yazdi G, Fragkoudis R, Chi Y, Siu RW, Ulper L, Barry G, Rodriguez-Andres J, Nash AA, Bouloy M, Merits A, Fazakerley JK, Kohl A. Cell-to-cell spread of the RNA interference response suppresses Semliki Forest virus (SFV) infection of mosquito cell cultures and cannot be antagonized by SFV. J Virol. 2009;83:5735–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Attoui H, Mohd Jaafar F, de Micco P, de Lamballerie X. Coltiviruses and Seadornaviruses in North America, Europe, and Asia. Emerg Infect Dis. 2005;11:1673–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW. A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Path. 2009;5:e1000582.

    Google Scholar 

  9. Barletta AB, Silva MC, Sorgine MH. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies. Parasit Vect. 2012;5:148.

    CAS  Google Scholar 

  10. Barrero RA, Keeble-Gagnere G, Zhang B, Moolhuijzen P, Ikeo K, Tateno Y, Gojobori T, Guerrero FD, Lew-Tabor A, Bellgard M. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus. BMC Genom. 2011;12:328.

    CAS  Google Scholar 

  11. Barry G, Alberdi P, Schnettler E, Weisheit S, Kohl A, Fazakerley JK, Bell-Sakyi L. Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Exp Appl Acarol. 2013;59:319–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Behura SK. Insect microRNAs: structure, function and evolution. Insect Biochem Mol Biol. 2007;37:3–9.

    CAS  PubMed  Google Scholar 

  13. Black WC, Bennett KE, Gorrochotegui-Escalante N, Barillas-Mury CV, Fernandez-Salas I, de Lourdes Munoz M, Farfan-Ale JA, Olson KE, Beaty BJ. Flavivirus susceptibility in Aedes aegypti. Arch Med Rs. 2002;33:379–88.

    CAS  Google Scholar 

  14. Blair CD. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 2011;6:265–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Carpenter S, Groschup MH, Garros C, Felippe-Bauer ML, Purse BV. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res. 2013;100:102–13.

    CAS  PubMed  Google Scholar 

  16. Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29:263–71.

    CAS  PubMed  Google Scholar 

  17. Charrel RN, de Lamballerie X, Raoult D. Chikungunya outbreaks—the globalization of vector borne diseases. N Engl J Med. 2007;356:769–71.

    CAS  PubMed  Google Scholar 

  18. Chen S, Chahar HS, Abraham S, Wu H, Pierson TC, Wang XA, Manjunath N. Ago-2-mediated slicer activity is essential for anti-flaviviral efficacy of RNAi. PLoS One. 2011;6:e27551.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Chhabra M, Mittal V, Bhattacharya D, Rana U, Lal S. Chikungunya fever: a re-emerging viral infection. Indian J Med Microbiol. 2008;26:5–12.

    CAS  PubMed  Google Scholar 

  20. Chiang YA, Hung HY, Lee CW, Huang YT, Wang HC. Shrimp Dscam and its cytoplasmic tail splicing activator serine/arginine (SR)-rich protein B52 were both induced after white spot syndrome virus challenge. Fish Shellfish Immunol. 2013;34:209–19.

    CAS  PubMed  Google Scholar 

  21. Choi IK, Hyun S. Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila. Dev Comp Immunol. 2012;37:50–4.

    CAS  PubMed  Google Scholar 

  22. Christensen BM, Li J, Chen CC, Nappi AJ. Melanization immune responses in mosquito vectors. Trends Parasitol. 2005;21:192–9.

    CAS  PubMed  Google Scholar 

  23. Chumakov MP. Report on the isolation from Ixodes persulcatus ticks and from patients in western Siberia of a virus differing from the agent of tick-borne encephalitis. Acta Virol. 1963;7:82–3.

    CAS  PubMed  Google Scholar 

  24. Cirimotich CM, Scott JC, Phillips AT, Geiss BJ, Olson KE. Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes. BMC Microbiol. 2009;9:49.

    PubMed Central  PubMed  Google Scholar 

  25. Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Path. 2011;7:e1002189.

    CAS  Google Scholar 

  26. Cordes EJ, Licking-Murray KD, Carlson KA. Differential gene expression related to Nora virus infection of Drosophila melanogaster. Virus Res. 2013;175:95–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Costa A, Jan E, Sarnow P, Schneider D. The Imd pathway is involved in antiviral immune responses in Drosophila. PLoS One. 2009;4:e7436.

    PubMed Central  PubMed  Google Scholar 

  28. Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, Hannon GJ, Brennecke J. An endogenous small interfering RNA pathway in Drosophila. Nature. 2008;453:798–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. de la Fuente J, Kocan KM, Almazan C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 2007;23:427–33.

    PubMed  Google Scholar 

  30. Dixon LK, Chapman DA, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res. 2013;173:3–14.

    CAS  PubMed  Google Scholar 

  31. Domingo E. Rapid evolution of viral RNA genomes. J Nutr. 1997;127(5 Suppl):958S–61S.

    CAS  PubMed  Google Scholar 

  32. Donald CL, Kohl A, Schnettler E. New insights into control of arbovirus replication and spread by insect RNA interference pathways. Insects. 2012;3:511–31.

    Google Scholar 

  33. Fragkoudis R, Chi Y, Siu RW, Barry G, Attarzadeh-Yazdi G, Merits A, Nash AA, Fazakerley JK, Kohl A. Semliki Forest virus strongly reduces mosquito host defence signaling. Insect Mol Biol. 2008;17:647–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Fragkoudis R, Attarzadeh-Yazdi G, Nash AA, Fazakerley JK, Kohl A. Advances in dissecting mosquito innate immune responses to arbovirus infection. J Gen Virol. 2009;90:2061–72.

    CAS  PubMed  Google Scholar 

  35. Garbuzov A, Tatar M. Hormonal regulation of Drosophila microRNA let-7 and miR-125 that target innate immunity. Fly. 2010;4:306–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Garcia S, Billecocq A, Crance JM, Munderloh U, Garin D, Bouloy M. Nairovirus RNA sequences expressed by a Semliki Forest virus replicon induce RNA interference in tick cells. J Virol. 2005;79:8942–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Garcia S, Billecocq A, Crance JM, Prins M, Garin D, Bouloy M. Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J Gen Virol. 2006;87:1985–9.

    CAS  PubMed  Google Scholar 

  38. Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science. 2008;320:1077–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L, Blanc H, Gausson V, Vera-Otarola J, Cristofari G, Saleh MC. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nature Immunol. 2013;14:396–403.

    CAS  Google Scholar 

  40. Gould EA, Solomon T. Pathogenic flaviviruses. Lancet. 2008;371:500–9.

    CAS  PubMed  Google Scholar 

  41. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Gu J, Hu W, Wu J, Zheng P, Chen M, James AA, Chen X, Tu Z. miRNA genes of an invasive vector mosquito, Aedes albopictus. PLoS One. 2013;8:e67638.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Haig DA, Woodall JP, Danskin D. Thogoto Virus: a hitherto underscribed agent isolated from ticks in Kenya. J Gen Microbiol. 1965;38:389–94.

    CAS  PubMed  Google Scholar 

  44. Handler D, Meixner K, Pizka M, Lauss K, Schmied C, Gruber FS, Brennecke J. The genetic makeup of the Drosophila piRNA pathway. Mol Cell. 2013;50:762–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE, Barbacioru C, Monighetti C, Campbell CL. Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol. 2011;11:45.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Hill CA, Wikel SK. The Ixodes scapularis Genome Project: an opportunity for advancing tick research. Trends Parasitol. 2005;21:151–3.

    CAS  PubMed  Google Scholar 

  47. Hoa NT, Keene KM, Olson KE, Zheng L. Characterization of RNA interference in an Anopheles gambiae cell line. Insect Biochem Mol Biol. 2003;33:949–57.

    CAS  PubMed  Google Scholar 

  48. Hollidge BS, Gonzalez-Scarano F, Soldan SS. Arboviral encephalitides: transmission, emergence, and pathogenesis. J Neuroimmune Pharmacol. 2010;5:428–42.

    PubMed Central  PubMed  Google Scholar 

  49. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–49.

    CAS  PubMed  Google Scholar 

  50. Huang Z, Kingsolver MB, Avadhanula V, Hardy RW. An antiviral role for antimicrobial peptides during the arthropod response to alphavirus replication. J Virol. 2013;87:4272–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hubalek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res. 2012;111:9–36.

    PubMed  Google Scholar 

  52. Hughes GL, Ren X, Ramirez JL, Sakamoto JM, Bailey JA, Jedlicka AE, Rasgon JL. Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction. PLoS Path. 2011;7:e1001296.

    CAS  Google Scholar 

  53. Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S. West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res. 2012;40:2210–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hussain M, Walker T, O’Neill SL, Asgari S. Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector. Aedes aegypti. Insect Biochem Mol Biol. 2013;43:146–52.

    CAS  PubMed  Google Scholar 

  55. Ishizu H, Siomi H, Siomi MC. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 2012;26:2361–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Iturbe-Ormaetxe I, Walker T. SL ON. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011;12:508–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell. 2010;39:292–9.

    CAS  PubMed  Google Scholar 

  58. Kadota K, Satoh E, Ochiai M, Inoue N, Tsuji N, Igarashi I, Nagasawa H, Mikami T, Claveria FG, Fujisaki K. Existence of phenol oxidase in the argasid tick Ornithodoros moubata. Parasitol Res. 2002;88:781–4.

    PubMed  Google Scholar 

  59. Kakumani PK, Ponia SS, Sood RKSV, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol. 2013;87:8870–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Karlikow M, Goic B. Saleh MC: RNAi and antiviral defense in Drosophila: setting up a systemic immune response. Dev Comp Immunol. 2014;42:85–92.

    CAS  PubMed  Google Scholar 

  61. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA. 2004;101:17240–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol. 2013;. doi:10.1016/j.jmb.2013.10.006.

    PubMed  Google Scholar 

  63. Kopacek P, Hajdusek O, Buresova V, Daffre S. Tick innate immunity. Adv Exp Med Biol. 2010;708:137–62.

    CAS  PubMed  Google Scholar 

  64. Kurata S, Ariki S, Kawabata S. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology. 2006;211:237–49.

    CAS  PubMed  Google Scholar 

  65. Kurscheid S, Lew-Tabor AE, Rodriguez Valle M, Bruyeres AG, Doogan VJ, Munderloh UG, Guerrero FD, Barrero RA, Bellgard MI. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Mol Biol. 2009;10:26.

    PubMed Central  PubMed  Google Scholar 

  66. Labuda M, Nuttall PA. Tick-borne viruses. Parasitology. 2004;129:S221–45.

    CAS  PubMed  Google Scholar 

  67. Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biol. 2003;4:R42.

    PubMed Central  PubMed  Google Scholar 

  68. Leger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z, Coppee JY, Bonnefoy E, Bouloy M. Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol. 2013;87:1631–48.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Letchworth GJ, Rodriguez LL, Barrera JDC. Vesicular stomatitis. Vet J. 1999;157:239–60.

    CAS  PubMed  Google Scholar 

  70. Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp. Fish Shellfish Immunol. 2013;34:973–80.

    CAS  PubMed  Google Scholar 

  71. Li S, Mead EA, Liang S, Tu Z. Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. BMC Genom. 2009;10:581.

    Google Scholar 

  72. Lipardi C. Paterson BM: identification of an RNA-dependent RNA polymerase in Drosophila involved in RNAi and transposon suppression. Proc Natl Acad Sci USA. 2009;106:15645–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Lipardi C, Paterson BM. Retraction for Lipardi and Paterson, “Identification of an RNA-dependent RNA polymerase in Drosophila involved in RNAi and transposon suppression”. Proc Natl Acad Sci USA. 2011;108:15010.

    CAS  PubMed  Google Scholar 

  74. Liu L, Dai J, Zhao YO, Narasimhan S, Yang Y, Zhang L, Fikrig E. Ixodes scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the agent of human granulocytic anaplasmosis. J Infect Dis. 2012;206:1233–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Lucas K, Raikhel AS. Insect microRNAs: biogenesis, expression profiling and biological functions. Insect Biochem Mol Biol. 2013;43:24–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Maclachlan NJ, Guthrie AJ. Re-emergence of bluetongue, African horse sickness, and other orbivirus diseases. Vet Res. 2010;41:35.

    PubMed Central  PubMed  Google Scholar 

  77. Masson P, Hulo C, De Castro E, Bitter H, Gruenbaum L, Essioux L, Bougueleret L, Xenarios I, Le Mercier P. ViralZone: recent updates to the virus knowledge resource. Nucleic Acids Res. 2013;41:D579–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Mathiot CC, Grimaud G, Garry P, Bouquety JC, Mada A, Daguisy AM, Georges AJ. An outbreak of human Semliki Forest virus infections in Central African Republic. Am J Trop Med Hyg. 1990;42:386–93.

    CAS  PubMed  Google Scholar 

  79. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarino CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012;367:834–41.

    CAS  PubMed  Google Scholar 

  80. Menghani S, Chikhale R, Raval A, Wadibhasme P, Khedekar P. Chandipura virus: an emerging tropical pathogen. Acta Trop. 2012;124:1–14.

    PubMed  Google Scholar 

  81. Merkling SH, van Rij RP. Beyond RNAi: antiviral defense strategies in Drosophila and mosquito. J Insect Physiol. 2013;59:159–70.

    CAS  PubMed  Google Scholar 

  82. Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Path. 2012;8:e1002470.

    CAS  Google Scholar 

  83. Moudy RM, Meola MA, Morin LL, Ebel GD, Kramer LD. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg. 2007;77:365–70.

    CAS  PubMed  Google Scholar 

  84. Myles KM, Wiley MR, Morazzani EM, Adelman ZN. Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci USA. 2008;105:19938–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem. 2000;275:29264–7.

    CAS  PubMed  Google Scholar 

  86. Nandi S, Negi BS. Bovine ephemeral fever: a review. Comp Immunol Microbiol Infect Dis. 1999;22(2):81–91.

    CAS  PubMed  Google Scholar 

  87. Naranjo V, Ayllon N, de la Perez Lastra JM, Galindo RC, Kocan KM, Blouin EF, Mitra R, Alberdi P, Villar M, de la Fuente J. Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, Ixodes scapularis. PloS One. 2013;8:e65915.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Nellaiappan K, Sugumaran M. On the presence of prophenoloxidase in the hemolymph of the horseshoe crab, Limulus. Comp Biochem Physiol Part B. 1996;113:163–8.

    CAS  Google Scholar 

  89. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316:1718–23.

    CAS  PubMed  Google Scholar 

  90. Normile D. Tropical medicine. Surprising new dengue virus throws a spanner in disease control efforts. Science. 2013;342(6157):415.

    CAS  PubMed  Google Scholar 

  91. Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, Lai EC. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature. 2008;453:803–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Paradkar PN, Trinidad L, Voysey R, Duchemin JB, Walker PJ. Secreted Vago restricts West Nile virus infection in Culex mosquito cells by activating the Jak-STAT pathway. Proc Natl Acad Sci USA. 2012;109:18915–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Puthiyakunnon S, Yao Y, Li Y, Gu J, Peng H, Chen X. Functional characterization of three MicroRNAs of the Asian tiger mosquito, Aedes albopictus. Parasit Vect. 2013;6:230.

    CAS  Google Scholar 

  94. Ramirez JL, Dimopoulos G. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol. 2010;34:625–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Renault P, Solet JL, Sissoko D, Balleydier E, Larrieu S, Filleul L, Lassalle C, Thiria J, Rachou E, de Valk H, et al. A major epidemic of chikungunya virus infection on Reunion Island, France, 2005–2006. Am J Trop Med Hyg. 2007;77:727–31.

    PubMed  Google Scholar 

  96. Rider MA, Zou J, Vanlandingham D, Nuckols JT, Higgs S, Zhang Q, Lacey M, Kim J, Wang G, Hong YS. Quantitative proteomic analysis of the Anopheles gambiae (Diptera: Culicidae) midgut infected with O’nyong-nyong virus. J Med Entomol. 2013;50:1077–88.

    PubMed  Google Scholar 

  97. Rodriguez-Andres J, Rani S, Varjak M, Chase-Topping ME, Beck MH, Ferguson MC, Schnettler E, Fragkoudis R, Barry G, Merits A, Fazakerley JK, Strand MR, Kohl A. Phenoloxidase activity acts as a mosquito innate immune response against infection with Semliki Forest virus. PLoS Path. 2012;8:e1002977.

    CAS  Google Scholar 

  98. Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature. 2009;458:346–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Sanchez-Vargas I, Travanty EA, Keene KM, Franz AW, Beaty BJ, Blair CD, Olson KE. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res. 2004;102:65–74.

    CAS  PubMed  Google Scholar 

  100. Savage HM, Godsey MS Jr, Lambert A, Panella NA, Burkhalter KL, Harmon JR, Lash RR, Ashley DC, Nicholson WL. First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods. Am J Trop Med Hyg. 2013;89:445–52.

    PubMed Central  PubMed  Google Scholar 

  101. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells. J Virol. 2012;86:13486–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Schnettler E, Donald CL, Human S, Watson M, Siu RWC, McFarlane M, Fazakerley JK, Kohl A, Fragkoudis R. Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol. 2013;94:1680–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Schnettler E, Ratinier M, Watson M, Shaw AE, McFarlane M, Varela M, Elliott RM, Palmarini M, Kohl A. RNA interference targets arbovirus replication in Culicoides cells. J Virol. 2013;87(5):2441–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B, Ebel GD, Olson KE, Blair CD. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl Trop Dis. 2010;4:e848.

    PubMed Central  PubMed  Google Scholar 

  105. Severson DW, Behura SK. Mosquito genomics: progress and challenges. Ann Rev Entomol. 2012;57:143–66.

    CAS  Google Scholar 

  106. Shin SW, Kokoza V, Ahmed A, Raikhel AS. Characterization of three alternatively spliced isoforms of the Rel/NF-kappa B transcription factor Relish from the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2002;99:9978–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Shin SW, Kokoza VA, Raikhel AS. Transgenesis and reverse genetics of mosquito innate immunity. J Exp Biol. 2003;206:3835–43.

    CAS  PubMed  Google Scholar 

  108. Shin SW, Kokoza V, Bian G, Cheon HM, Kim YJ, Raikhel AS. REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem. 2005;280:16499–507.

    CAS  PubMed  Google Scholar 

  109. Sim S, Jupatanakul N, Ramirez JL, Kang S, Romero-Vivas CM, Mohammed H, Dimopoulos G. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis. 2013;7:e2295.

    PubMed Central  PubMed  Google Scholar 

  110. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nature Rev Mol Cell Biol. 2011;12:246–58.

    CAS  Google Scholar 

  111. Siu RWC, Fragkoudis R, Simmonds P, Donald CL, Chase-Topping ME, Barry G, Attarzadeh-Yazdi G, Rodriguez-Andres J, Nash AA, Merits A, Fazakerley JK, Kohl A. Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. J Virol. 2010;85:2907–17.

    PubMed Central  PubMed  Google Scholar 

  112. Skalsky RL, Vanlandingham DL, Scholle F, Higgs S, Cullen BR. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genom. 2010;11:119.

    Google Scholar 

  113. Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol. 2000;10:169–78.

    CAS  PubMed  Google Scholar 

  114. Smith DR, Adams AP, Kenney JL, Wang E, Weaver SC. Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology. 2008;372:176–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA. 2009;106:17841–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Tamang D, Tseng SM, Huang CY, Tsao IY, Chou SZ, Higgs S, Christensen BM, Chen CC. The use of a double subgenomic Sindbis virus expression system to study mosquito gene function: effects of antisense nucleotide number and duration of viral infection on gene silencing efficiency. Insect Mol Biol. 2004;13:595–602.

    CAS  PubMed  Google Scholar 

  117. Thio CL, Yusof R, Abdul-Rahman PS, Karsani SA. Differential proteome analysis of chikungunya virus infection on host cells. PLoS One. 2013;8:e61444.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Thirugnanasambantham K, Hairul-Islam VI, Saravanan S, Subasri S, Subastri A. Computational approach for identification of Anopheles gambiae miRNA involved in modulation of host immune response. Appl Biochem Biotechnol. 2013;170:281–91.

    CAS  PubMed  Google Scholar 

  119. Tsai CW, McGraw EA, Ammar ED, Dietzgen RG, Hogenhout SA. Drosophila melanogaster mounts a unique immune response to the Rhabdovirus sigma virus. Appl Environ Microbiol. 2008;74:3251–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313:320–4.

    CAS  PubMed  Google Scholar 

  121. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq JS, Fontenille D, Schuffenecker I, Despres P, Failloux AB. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PloS One. 2007;2:e1168.

    PubMed Central  PubMed  Google Scholar 

  122. Vijayendran D, Airs PM, Dolezal K, Bonning BC. Arthropod viruses and small RNAs. J Invert Pathol. 2013;114:186–95.

    CAS  Google Scholar 

  123. Vodovar N, Bronkhorst AW, van Cleef KW, Miesen P, Blanc H, van Rij RP, Saleh MC. Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One. 2012;7:e30861.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Voinnet O. Non-cell autonomous RNA silencing. FEBS Lett. 2005;579:5858–71.

    CAS  PubMed  Google Scholar 

  125. Waldock J, Olson KE, Christophides GK. Anopheles gambiae antiviral immune response to systemic O’nyong-nyong infection. PLoS Negl Trop Dis. 2012;6:e1565.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, Barillas-Mury C, Bian G, Blandin S, Christensen BM, Dong YM, Jiang HB, Kanost MR, Koutsos AC, Levashina EA, Li JY, Ligoxygakis P, MacCallum RM, Mayhew GF, Mendes A, Michel K, Osta MA, Paskewitz S, Shin SW, Vlachou D, Wang LH, Wei WQ, Zheng LB, Zou Z, Severson DW, Raikhel AS, Kafatos FC, Dimopoulos G, Zdobnov EM, Christophides GK. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science. 2007;316:1738–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Williams MC, Woodall JP, Corbet PS, Gillett JD. O’nyong-Nyong fever: an epidemic virus disease in East Africa. 8. Virus isolations from Anopheles mosquitoes. Trans R Soc Trop Med Hyg. 1965;59:300–6.

    CAS  PubMed  Google Scholar 

  128. Winter F, Edaye S, Huttenhofer A, Brunel C. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Res. 2007;35:6953–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci USA. 2010;107:1606–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Path. 2008;4:e1000098.

    Google Scholar 

  131. Yang SJ, Carter SA, Cole AB, Cheng NH, Nelson RS. A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. Proc Natl Acad Sci USA. 2004;101:6297–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364:1523–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Zhang G, Hussain M, O’Neill SL, Asgari S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc Natl Acad Sci USA. 2013;110:10276–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Zhioua E, Yeh MT, LeBrun RA. Assay for phenoloxidase activity in Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. J Parasitol. 1997;83:553–4.

    CAS  PubMed  Google Scholar 

  135. Zhou J, Zhou Y, Cao J, Zhang H, Yu Y. Distinctive microRNA profiles in the salivary glands of Haemaphysalis longicornis related to tick blood-feeding. Exp Appl Acarol. 2013;59:339–49.

    CAS  PubMed  Google Scholar 

  136. Zou Z, Souza-Neto J, Xi Z, Kokoza V, Shin SW, Dimopoulos G, Raikhel A. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity. PLoS Path. 2011;7:e1002394.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Mark Fife and Dr Simon Carpenter for providing information on the Culicoides genome project. Claudia Rückert is an Early Stage Researcher supported by the POSTICK ITN (Post-graduate training network for capacity building to control ticks and tick-borne diseases) within the FP7- PEOPLE – ITN programme (European Union Grant No. 238511). Lesley Bell-Sakyi, John Fazakerley and Rennos Fragkoudis are supported by the United Kingdom Biotechnology and Biological Sciences Research Council’s Strategic Programme Grant and National Capability Grant to the Pirbright Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rennos Fragkoudis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rückert, C., Bell-Sakyi, L., Fazakerley, J.K. et al. Antiviral responses of arthropod vectors: an update on recent advances. VirusDis. 25, 249–260 (2014). https://doi.org/10.1007/s13337-014-0217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-014-0217-9

Keywords

Navigation