Skip to main content

Advertisement

Log in

Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawamura S, Lotito K, Rodeo SA. Biomechanics and healing response of the meniscus. Oper Tech Sports Med. 2003;11:68–76.

    Article  Google Scholar 

  2. Proctor C, Schmidt M, Whipple R, Kelly M, Mow V. Material properties of the normal medial bovine meniscus. J Orthop Res. 1989;7:771–82.

    Article  CAS  PubMed  Google Scholar 

  3. Rath E, Richmond JC. The menisci: basic science and advances in treatment. Br J Sports Med. 2000;34:252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br Vol. 1970;52:564–70.

    CAS  Google Scholar 

  5. Nakano T, Dodd CM, Scott PG. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J Orthop Res. 1997;15:213–20.

    Article  CAS  PubMed  Google Scholar 

  6. Arnoczky SP, Warren RF. The microvasculature of the meniscus and its response to injury an experimental study in the dog. Am J Sports Med. 1983;11:131–41.

    Article  CAS  PubMed  Google Scholar 

  7. Fayard J-M, Pereira H, Servien E, Lustig S, Neyret P. Meniscectomy: global results—complications. The Meniscus: Springer; 2010. pp. 177–90.

  8. Peters G, Wirth CJ. The current state of meniscal allograft transplantation and replacement. Knee. 2003;10:19–31.

    Article  PubMed  Google Scholar 

  9. Burks RT, Metcalf MH, Metcalf RW. Fifteen-year follow-up of arthroscopic partial meniscectomy. Arthroscopy. 1997;13:673–9.

  10. Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen–GAG matrices in vitro. Biomaterials. 1999;20:701–9.

    Article  CAS  PubMed  Google Scholar 

  11. Gruber HE, Mauerhan D, Chow Y, Ingram JA, Norton HJ, Hanley EN, et al. Three-dimensional culture of human meniscal cells: extracellular matrix and proteoglycan production. BMC Biotechnol. 2008;8:54.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harris Jr ED, Farrell ME. Resistance to collagenase: a characteristic of collagen fibrils cross-linked by formaldehyde. Biochimica et Biophysica Acta (BBA)-Protein Structure. 1972;278:133–41.

    Article  CAS  Google Scholar 

  13. Van Luyn M, Van Wachem P, Olde Damink L, Dijkstra P, Feijen J, Nieuwenhuis P. Relations between in vitro cytotoxicity and crosslinked dermal sheep collagens. J Biomed Mater Res. 1992;26:1091–110.

    Article  PubMed  Google Scholar 

  14. Hovakimyan M, Guthoff RF, Stachs O. Collagen cross-linking: current status and future directions. J Ophthalmol. 2012;2012, 406850.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Spörl E, Huhle M, Kasper M, Seiler T. Increased rigidity of the cornea caused by intrastromal cross-linking. Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft. 1997;94:902–6.

    Article  Google Scholar 

  16. Zhang Y, Conrad AH, Conrad GW. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem. 2011;286:13011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tirella A, Liberto T, Ahluwalia A. Riboflavin and collagen: new crosslinking methods to tailor the stiffness of hydrogels. Mater Lett. 2012;74:58–61.

    Article  CAS  Google Scholar 

  18. Choi B, Kim S, Lin B, Li K, Bezouglaia O, Kim J, et al. Visible-light-initiated hydrogels preserving cartilage extracellular signaling for inducing chondrogenesis of mesenchymal stem cells. Acta Biomater. 2015;12:30–41.

    Article  CAS  PubMed  Google Scholar 

  19. Sonoda M, Harwood FL, Amiel ME, Moriya H, Temple M, Chang DG, et al. The effects of hyaluronan on tissue healing after meniscus injury and repair in a rabbit model. Am J Sports Med. 2000;28:90–7.

    CAS  PubMed  Google Scholar 

  20. Yeom J, Bhang SH, Kim B-S, Seo MS, Hwang EJ, Cho IH, et al. Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjug Chem. 2010;21:240–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bitter T, Muir HM. A modified uronic acid carbazole reaction. Anal Biochem. 1962;4:330–4.

    Article  CAS  PubMed  Google Scholar 

  22. Lee JM, Pereira CA, Kan LW. Effect of molecular structure of poly (glycidyl ether) reagents on crosslinking and mechanical properties of bovine pericardial xenograft materials. J Biomed Mater Res. 1994;28:981–92.

    Article  CAS  PubMed  Google Scholar 

  23. Cooper NR. The classical complement pathway: activation and regulation of the first complement component. Adv Immunol. 1985;37:151–216.

    Article  CAS  PubMed  Google Scholar 

  24. Wu Y. Preparation of low-molecular-weight hyaluronic acid by ozone treatment. Carbohydr Polym. 2012;89:709–12.

    Article  CAS  PubMed  Google Scholar 

  25. Brennan-Pierce EP, MacAskill I, Price RB, Lee JM. Riboflavin-sensitized photo-crosslinking of collagen using a dental curing light. Bio-Med Mater Eng. 2014;24:1659–71.

    CAS  Google Scholar 

  26. Choi B, Kim S, Lin B, Li K, Bezouglaia O, Kim J, et al. Visible-light-initiated hydrogels preserving cartilage extracellular signaling for inducing chondrogenesis of mesenchymal stem cells. Acta Biomater. 2015;12C:30–41.

    Article  Google Scholar 

  27. Konstantopoulos A, Mehta JS. Conventional versus accelerated collagen cross-linking for keratoconus. Eye Contact Lens. 2015;41:65–71.

  28. Voicescu M, Ionita G, Constantinescu T, Vasilescu M. The oxidative activity of riboflavin studied by luminescence methods: the effect of cysteine, arginine, lysine and histidine amino acids. Rev Roum Chim. 2006;51:683–90.

    CAS  Google Scholar 

  29. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11:65–74.

    Article  PubMed  Google Scholar 

  30. Ibusuki S, Halbesma GJ, Randolph MA, Redmond RW, Kochevar IE, Gill TJ. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng. 2007;13:1995–2001.

    Article  CAS  PubMed  Google Scholar 

  31. Zeeman R, Dijkstra PJ, van Wachem PB, van Luyn MJ, Hendriks M, Cahalan PT, et al. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 1999;20:921–31.

    Article  CAS  PubMed  Google Scholar 

  32. Han W, Heo S, Driscoll T, Boggs M, Duncan R, Mauck R, et al. Impact of cellular microenvironment and mechanical perturbation on calcium signalling in meniscus fibrochondrocytes. Eur Cells Mater. 2014;27:321–31.

    CAS  Google Scholar 

  33. Chevrier A, Nelea M, Hurtig MB, Hoemann CD, Buschmann MD. Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res. 2009;27:1197–203.

    Article  PubMed  Google Scholar 

  34. Hasan J, Fisher J, Ingham E. Current strategies in meniscal regeneration. J Biomed Mater Res B Appl Biomater. 2014;102:619–34.

    Article  PubMed  Google Scholar 

  35. Eyre D, Koob T, Chun L. Biochemistry of the meniscus: unique profile of collagen types and site-dependent variations in composition. Orthop Trans. 1983;8:56.

    Google Scholar 

  36. Croutze R, Jomha N, Uludag H, Adesida A. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskelet Disord. 2013;14:353.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ishima M, Wada Y, Sonoda M, Harada Y, Katsumi A, Moriya H. Effects of hyaluronan on the healing of rabbit meniscus injured in the peripheral region. J Orthop Sci. 2000;5:579–84.

    Article  CAS  PubMed  Google Scholar 

  38. Freymann U, Endres M, Goldmann U, Sittinger M, Kaps C. Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-β3 on cell recruitment and re-differentiation. Osteoarthr Cartil. 2013;21:773–81.

    Article  CAS  PubMed  Google Scholar 

  39. Tan G-K, Dinnes DL, Butler LN, Cooper-White JJ. Interactions between meniscal cells and a self assembled biomimetic surface composed of hyaluronic acid, chitosan and meniscal extracellular matrix molecules. Biomaterials. 2010;31:6104–18.

    Article  CAS  PubMed  Google Scholar 

  40. Marsano A, Vunjak-Novakovic G, Martin I. Towards tissue engineering of meniscus substitutes: selection of cell source and culture environment. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3656–8.

  41. Chao KL, Muthukumar L, Herzberg O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry. 2007;46:6911–20.

    Article  CAS  PubMed  Google Scholar 

  42. Yan XM, Seo MS, Hwang EJ, Cho IH, Hahn SK, Sohn UD. Improved synthesis of hyaluronic acid hydrogel and its effect on tissue augmentation. J Biomater Appl. 2011;27:179–86.

Download references

Acknowledgment

This research was supported by the Ministry of Health and Welfare of Korea (grant no. HI13C0451020013).

Informed consent

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel S. Hwang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Elastic modulus of riboflavin (RF)-induced photo-crosslinked collagen hydrogels with various RF concentrations. Maximum elastic modulus was achieved with 0.01 % of RF. Error bars represent the standard deviation on the mean for n = 3. (GIF 9 kb)

High resolution image (TIFF 12690 kb)

Supplementary Figure 2

1H-NMR spectra of synthesized crosslinked HA. 1.3 and 1.7 ppm indicate the presence of newly formed HA connecting carbon chain. (GIF 6 kb)

High resolution image (TIFF 44814 kb)

Supplementary Figure 3

Gross image of fibrochondrocyte encapsulated COL-RF-HA construct after 4 weeks of implantation and Masson’s trichrome staining analysis of in vivo engineered tissues. Scale bar = 100 μm. (GIF 37 kb)

High resolution image (TIFF 4566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Koh, R.H., Shim, W. et al. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv. and Transl. Res. 6, 148–158 (2016). https://doi.org/10.1007/s13346-015-0224-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0224-4

Keywords

Navigation