Skip to main content

Advertisement

Log in

Rabies virus glycoprotein enhances spatial memory via the PDZ binding motif

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Rabies is a life-threatening viral infection of the brain. Rabies virus (RABV) merely infects excitable cells including neurons provoking drastic behaviors including negative emotional memories. RABV glycoprotein (RVG) plays a critical role in RABV pathogenesis. RVG interacts with various cytoplasmic PDZ (PSD-95/Dlg/ZO-1) containing proteins through its PDZ binding motif (PBM). PTZ domains have crucial role in formation and function of signal transduction. Hippocampus is one of the cerebral regions that contain high load of viral antigens. We examined impact of RVG expression in the dorsal hippocampus on aversive as well as spatial learning and memory performance in rats. Two microliter of the lentiviral vector (~108 T.U./ml) encoding RVG or ∆RVG (deleted PBM) genomes was microinjected into the hippocampal CA1. After 1 week, rat’s brain was cross-sectioned and RVG/∆RVG-expressing neuronal cells were confirmed by fluorescent microscopy. Passive avoidance and spatial learning and memory were assessed in rats by Shuttle box and Morris water maze (MWM). In the shuttle box, both RVG and ∆RVG decreased the time spent in the dark compartment compared to control (p < 0.05). In MWM, RVG and ∆RVG did not affect the acquisition of spatial task. In the probe test, RVG-expressing rats spent more time in the target quadrant, and also reached the platform position sooner than control group (p < 0.05). Rats expressing ∆RVG significantly swam farther from the hidden platform than RVG group (p < 0.05). Our data indicate RVG expression in the hippocampus strengthens aversive and spatial learning and memory performance. The boosting effect on spatial but not avoidance memory is mediated through PBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bernier BE, Lacagnina AF, Ayoub A, Shue F, Zemelman BV, Krasne FB, Drew MR (2017) Dentate gyrus contributes to retrieval as well as encoding: evidence from context fear conditioning, recall, and extinction. J Neurosci 37:6359–6371

    Article  CAS  Google Scholar 

  • Bouzamondo E, Ladogana A, Tsiang H (1993) Alteration of potassium-evoked 5-HT release from virus-infected rat cortical synaptosomes. NeuroReport 4:555–558

    Article  CAS  Google Scholar 

  • Caillet-Saguy C, Maisonneuve P, Delhommel F, Terrien E, Babault N, Lafon M, Cordier F, Wolff N (2015) Strategies to interfere with PDZ-mediated interactions in neurons: what we can learn from the rabies virus. Prog Biophys Mol Biol 119:53–59

    Article  CAS  Google Scholar 

  • Ceccaldi P-E, Fillion M-P, Ermine A, Tsiang H, Fillion G (1993) Rabies virus selectively alters 5-HT1 receptors subtypes in rat brain. Eur J Pharmacol 245:129–138

    Article  CAS  Google Scholar 

  • Chen X, Levy JM, Hou A, Winters C, Azzam R, Sousa AA, Leapman RD, Nicoll RA, Reese TS (2015) PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci 112:E6983–E6992

    Article  CAS  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacol 35:105–135

    Article  Google Scholar 

  • Dong H-W, Swanson LW, Chen L, Fanselow MS, Toga AW (2009) Genomic–anatomic evidence for distinct functional domains in hippocampal field CA1. Proc Natl Acad Sci 106:11794–11799

    Article  CAS  Google Scholar 

  • Dong H, O’Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386:279–284

    Article  CAS  Google Scholar 

  • Dumrongphol H, Srikiatkhachorn A, Hemachudha T, Kotchabhakdi N, Govitrapong P (1996) Alteration of muscarinic acetylcholine receptors in rabies viral-infected dog brains. J Neurol Sci 137:1–6

    Article  CAS  Google Scholar 

  • Engin E, Smith KS, Gao Y, Nagy D, Foster RA, Tsvetkov E, Keist R, Crestani F, Fritschy J-M, Bolshakov VY, Hajos M, Heldt SA, Rudolph U (2016) Modulation of anxiety and fear via distinct intrahippocampal circuits. Elife 5:e14120

    Article  Google Scholar 

  • Farzaneh M, Sayyah M, Eshraghi HR, Panahi N, Delavar HM, Pourbadie HG (2018) Transduction efficacy and retrograde movement of a lentiviral vector pseudotyped by modified rabies glycoprotein throughout the trisynaptic circuit of the rat hippocampus. J Gene Med 20:e3046

    Article  Google Scholar 

  • Fu ZF, Jackson AC (2005) Neuronal dysfunction and death in rabies virus infection. J Neurovirol 11:101–106

    Article  CAS  Google Scholar 

  • Ghassemi S, Asgari T, Mirzapour-Delavar H, Aliakbari S, Gholami Pourbadie H, Prehaud C, Lafon M, Gholami A, Azadmanesh K, Naderi N, Sayyah M (2021) Lentiviral Expression of Rabies Virus Glycoprotein in the Rat Hippocampus Strengthens Synaptic Plasticity 1–12

  • Goosens KA (2011) Hippocampal regulation of aversive memories. Curr Opin Neurobiol 21:460–466

    Article  CAS  Google Scholar 

  • Gourmelon P, Briet D, Clarençon D, Court L, Tsiang H (1991) Sleep alterations in experimental street rabies virus infection occur in the absence of major EEG abnormalities. Brain Res 554:159–165

    Article  CAS  Google Scholar 

  • Hueffer K, Khatri S, Rideout S, Harris MB, Papke RL, Stokes C, Schulte MK (2017) Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Iwata M, Komori S, Unno T, Minamoto N, Ohashi H (1999) Modification of membrane currents in mouse neuroblastoma cells following infection with rabies virus. Br J Pharmacol 126:1691–1698

    Article  CAS  Google Scholar 

  • Jackson AC (2016) Diabolical effects of rabies encephalitis. J Neurovirol 22:8–13

    Article  CAS  Google Scholar 

  • Khan Z, Terrien E, Delhommel F, Lefebvre-Omar C, Bohl D, Vitry S, Bernard C, Ramirez J, Chaffotte A, Ricquier K (2019) Structure-based optimization of a PDZ binding motif within a viral peptide stimulates neurite outgrowth. J Biol Chem 294:13755–13768

    Article  CAS  Google Scholar 

  • Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77:955–968

    Article  CAS  Google Scholar 

  • Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, Ohsugi M, Kiyama Y, Horai R, Sudo K (2007) Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci 26:2269–2278

    Article  Google Scholar 

  • Kunitsyna TA, Ivashkina OI, Roshchina MA, Toropova KA, Anokhin KV (2016) Lentiviral transduction of neurons in adult brain: evaluation of inflammatory response and cognitive effects in mice. Bull Exp Biol Med 161:316–319

    Article  CAS  Google Scholar 

  • Ladogana A, Bouzamondo E, Pocchiari M, Tsiang H (1994) Modification of tritiated γ-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. J Gen Virol 75:623–627

    Article  CAS  Google Scholar 

  • Lafon M (2011) Evasive strategies in rabies virus infection. Adv Virus Res 79:33–53

    Article  CAS  Google Scholar 

  • Lee SLT, Lew D, Wickenheisser V, Markus E (2019) Interdependence between dorsal and ventral hippocampus during spatial navigation. Brain Behav 9:e01410

    Article  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  Google Scholar 

  • Leonard AS, Davare MA, Horne MC, Garner CC, Hell JW (1998) SAP97 is associated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J Biol Chem 273:19518–19524

    Article  CAS  Google Scholar 

  • Nourry C, Grant SG, Borg J-PJSS (2003) PDZ domain proteins: plug and play! 2003:re7-re7

  • O’Keefe J, Conway D (1978) Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res 31:573–590

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard, cover. Elsevier

    Google Scholar 

  • Pourbadie HG, Sayyah M, Khoshkholgh-Sima B, Choopani S, Nategh M, Motamedi F, Shokrgozar MA (2018) Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer’s disease–related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiol Aging 70:203–216

    Article  CAS  Google Scholar 

  • Prehaud C, Lay S, Dietzschold B, Lafon M (2003) Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis. J Virol 77:10537–10547

    Article  CAS  Google Scholar 

  • Préhaud C, Wolff N, Terrien E, Lafage M, Mégret F, Babault N, Cordier F, Tan GS, Maitrepierre E, Ménager P (2010) Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal 3:ra5

  • Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 82:513–521

    Article  CAS  Google Scholar 

  • Segal M, Richter-Levin G, Maggio N (2010) Stress-induced dynamic routing of hippocampal connectivity: a hypothesis. Hippocampus 20:1332–1338

    Article  Google Scholar 

  • Song Y, Hou J, Qiao B, Li Y, Xu Y, Duan M, Guan Z, Zhang M, Sun L (2013) Street rabies virus causes dendritic injury and F-actin depolymerization in the hippocampus. J Gen Virol 94:276–283

    Article  CAS  Google Scholar 

  • Srivastava S, Osten P, Vilim F, Khatri L, Inman G, States B, Daly C, DeSouza S, Abagyan R, Valtschanoff J (1998) Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor–binding protein ABP. Neuron 21:581–591

    Article  CAS  Google Scholar 

  • Van Strien N, Cappaert N, Witter M (2009) The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat Rev Neurosci 10:272–282

    Article  Google Scholar 

  • Wilson PJ, Rohde RE (2019) Rabies E-Book: Clinical Considerations and Exposure Evaluations. Dolores Meloni

  • Xia J, Zhang X, Staudinger J, Huganir RL (1999) Clustering of AMPA receptors by the synaptic PDZ domain–containing protein PICK1. Neuron 22:179–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Gholami Pourbadie or Mohammad Sayyah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghassemi, S., Asgari, T., Pourbadie, H.G. et al. Rabies virus glycoprotein enhances spatial memory via the PDZ binding motif. J. Neurovirol. 27, 434–443 (2021). https://doi.org/10.1007/s13365-021-00972-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-021-00972-2

Keywords

Navigation