Skip to main content
Log in

Effect of Nanoclay on Thermomechanical Properties of Epoxy/Glass Fibre Composites

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigates the effects of nanoclay on the mechanical properties and fire performance of epoxy/ glass fibre composites. The cone calorimeter test in a horizontal configuration is used as the bench-scale test to determine the heat and smoke production from samples with nanoclay contents ranging from 1 to 5 wt%. All the samples are produced by a vacuum infusion process. Pristine nanoclay is treated with an organic surfactant before adding it to the mixture in the designed procedure. The results show that a low percentage of less than 3 wt% nanoclay produces a scattered nanoparticle dispersion and, therefore, is insufficient for char formation. The combustion of the organic surfactant in nanoclay and the polymeric resin also outperform the effect of nanoclay at this level. At 5 wt% nanoclay replacement, a delay of 7 s in heat release rate, 45 % lower peak of heat release rate, 15 % lower total heat release, and 15 % lower smoke production rate are observed. Scanning electron microscopy (SEM) images of the samples with varied organophilic clay concentration taken before and after the cone tests are presented to reveal the distribution of clay nanoparticles in the composite samples. The mechanical properties such as ultimate strength, Young’s modulus of the nanoclay-enhanced composite are acquired from standard tensile test to determine the influences of clay content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crossley R., Schubel P., Stevenson A.: Furan matrix and flax fibre as a sustainable renewable composite: mechanical and fire-resistant properties in comparison to phenol, epoxy and polyester. J. Reinf. Plast. Compos. 33(1), 58–68 (2014)

    Article  Google Scholar 

  2. Duflou J.R., Deng Y., Van Acker K., Dewulf W.: Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study. MRS Bull. 37(4), 374–382 (2012)

    Article  Google Scholar 

  3. Nguyen Q.T., Ngo T.D., Mendis P., Tran P.: Composite materials for the next generation building facade systems. Civil Eng. Arch. 1(3), 88–95 (2013)

    Google Scholar 

  4. Pendhari S.S., Kant T., Desai Y.M.: Application of polymer composites in civil construction: a general review. Compos. Struct. 84(2), 114–124 (2008)

    Article  Google Scholar 

  5. Faruqi M.A., Escobedo G., Sun D., Sai J.: Research and design guidelines for the construction of fiber-reinforced polymer reinforced concrete structures under fire exposure: a brief review. J. Reinf. Plast. Compos. 32(17), 1302–1309 (2013)

    Article  Google Scholar 

  6. Gibson A.G., Wright P.N.H., Wu Y.S., Mouritz A.P., Mathys Z., Gardiner C.P.: The integrity of polymer composites during and after fire. J. Compos. Mater. 38(15), 1283–1307 (2004)

    Article  Google Scholar 

  7. Katancic Z., Krehula L.K., Sirocic A.P., Grozdanic V., Hrnjak-Murgic Z.: Effect of modified nanofillers on fire retarded high-density polyethylene/wood composites. J. Compos. Mater. 48(30), 3771–3783 (2014)

    Article  Google Scholar 

  8. Wei X.D., Vaucorbeil A.de, Tran P., Espinosa H.D.: A new rate-dependent unidirectional composite model - Application to panels subjected to underwater blast. J. Mech. Phys. Solids 61(6), 1305–1318 (2013)

    Article  MathSciNet  Google Scholar 

  9. Liu Y., Deng C.L., Zhao J., Wang J.S., Chen L., Wang Y.Z.: An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system. Polym. Degrad. Stab. 96(3), 363–370 (2011)

    Article  Google Scholar 

  10. Nguyen Q.T., Ngo T.D., Tran P., Mendis P., Bhattacharyya D.: Influences of clay and manufacturing on fire resistance of organoclay/thermoset nanocomposites. Compos. Part A Appl. Sci. Manuf. 74, 26–37 (2015)

    Article  Google Scholar 

  11. Nguyen Q.T., Tran P., Ngo T.D., Tran P.A., Mendis P.: Experimental and computational investigations on fire resistance of GFRP composite for building facade. Compos. Part B Eng. 62, 218–229 (2014)

    Article  Google Scholar 

  12. Al-Saidy A.H., Klaiber F.W., Wipf T.J.: Strengthening of steel–concrete composite girders using carbon fiber reinforced polymer plates. Constr. Build. Mater. 21(2), 295–302 (2007)

    Article  Google Scholar 

  13. Feo L., Mosallam A.S., Penna R.: Mechanical behavior of web–flange junctions of thin-walled pultruded I-profiles: An experimental and numerical evaluation. Compos. Part B Eng. 48, 18–39 (2013)

    Article  Google Scholar 

  14. Uomoto T., Mutsuyoshi H., Katsuki F., Misra S.: Use of fiber reinforced polymer composites as reinforcing material for concrete. J. Mater. Civil Eng. 14(3), 191–209 (2002)

    Article  Google Scholar 

  15. Ghazlan A., Ngo T.D., Tran P.: Influence of interfacial geometry on the energy absorption capacity and load sharing mechanisms of nacreous composite shells. Compos. Struct. 132, 299–309 (2015)

    Article  Google Scholar 

  16. Tran P., Ngo T.D., Mendis P.: Bio-inspired composite structures subjected to underwater impulsive loading. Comput. Mater. Sci. 82, 134–139 (2014)

    Article  Google Scholar 

  17. Yang C., Tran P., Ngo T., Mendis P., Humphries W.: Effect of Textile Architecture on Energy Absorption of Woven Fabrics Subjected to Ballistic Impact. Appl. Mech. Mater. 553, 757–762 (2014)

    Article  Google Scholar 

  18. Dahiya J.B., Kandola B.K., Sitpalan A., Horrocks A.R.: Effects of nanoparticles on the flame retardancy of the ammonium sulphamate-dipentaerythritol flame-retardant system in polyamide 6. Polym. Adv. Tech. 24(4), 398–406 (2013)

    Article  Google Scholar 

  19. Huang G.B., Yang J.G., Wang X., Gao J.R.: Nanoclay, intumescent flame retardants, and their combination with chemical modification for the improvement of the flame retardant properties of polymer nanocomposites. Macromol. Res. 21(1), 27–34 (2013)

    Article  Google Scholar 

  20. Thirumal M., Khastgir D., Singha N.K., Manjunath B.S., Naik Y.P.: Effect of a Nanoclay on the Mechanical, Thermal and Flame Retardant Properties of Rigid Polyurethane Foam. J. Macromol. Sci. Part A Pure Appl. Chem. 46(7), 704–712 (2009)

    Article  Google Scholar 

  21. Beyer G.: Flame retardancy of nanocomposites-from research to technical products. J. Fire Sci. 23(1), 75–87 (2005)

    Article  Google Scholar 

  22. Dabrowski F., Le Bras M., Delobel R., Gilman J.W., Kashiwagi T.: Using clay in PA-based intumescent formulations. Fire performance and kinetic parameters. Macromol. Symposia 194(1), 201–206 (2003)

    Article  Google Scholar 

  23. Gilman J.W.: Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15(1–2), 31–49 (1999)

    Article  Google Scholar 

  24. Gilman J.W., Lomakin S., Kashiwagi T., VanderHart D.L., Nagy V.: Characterization of flame-retarded polymer combustion chars by solid-state 13C and 29Si NMR and EPR. Fire Mater. 22(2), 61–67 (1998)

    Article  Google Scholar 

  25. Gilman J.W., Ritchie S.J., Kashiwagi T., Lomakin S.M.: Fire-retardant additives for polymeric materials—I Char formation from silica gel–potassium carbonate. Fire Mater. 21(1), 23–32 (1997)

    Article  Google Scholar 

  26. Liu T., Ping Lim K., Chauhari Tjiu W., Pramoda K.P., Chen Z.-K.: Preparation and characterization of nylon 11/organoclay nanocomposites. Polymer 44(12), 3529–3535 (2003)

    Article  Google Scholar 

  27. Morgan A.B.: Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Tech. 17(4), 206–217 (2006)

    Article  Google Scholar 

  28. Morgan A.B., Harris R.H., Kashiwagi T., Chyall L.J., Gilman J.W.: Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation. Fire Mater. 26(6), 247–253 (2002)

    Article  Google Scholar 

  29. Shi Y., Kashiwagi T., Walters R.N., Gilman J.W., Lyon R.E., Sogah D.Y.: Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer 50(15), 3478–3487 (2009)

    Article  Google Scholar 

  30. Shi, L.; Chew, M.Y.L.: Fire behaviors of polymers under autoignition conditions in a cone calorimeter. Fire Safety Journal 61, 243–253 (2013)

  31. Gintert M.J., Jana S.C., Miller S.G.: A novel strategy for nanoclay exfoliation in thermoset polyimide nanocomposite systems. Polymer 48(14), 4166–4173 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, T.D., Nguyen, Q.T., Nguyen, T.P. et al. Effect of Nanoclay on Thermomechanical Properties of Epoxy/Glass Fibre Composites. Arab J Sci Eng 41, 1251–1261 (2016). https://doi.org/10.1007/s13369-015-1898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1898-0

Keywords

Navigation