Skip to main content
Log in

Reliability and Prediction of Embedment Depth of Sheet pile Walls Using Hybrid ANN with Optimization Techniques

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the fact that uncertainties in the field of geotechnical engineering are inescapable because this part of civil engineering deals largely with natural materials, the dependability analysis of geotechnical structures has gotten a lot of attention in recent decades. This study looks at the reliability of embedded depth of cantilever sheet pile walls that are embedded in cohesive soil and backfilled with cohesionless soil. For the reliability analysis, the first-order reliability method (FORM) was employed to analyse the cantilever sheet pile. With the use of various optimization strategies, namely artificial bee colony, ant colony optimization, ant lion colony, imperialist competitive algorithm, shuffled complex evolution and teaching–learning-based optimization, the widely used artificial neural network (ANN) is used to forecast the embedment depth of a cantilever sheet pile wall. The input variables for predicting pile embedded depth include soil properties such as cohesiveness (c), angle of internal friction (φ) and unit weight (γ). To assess the models` performance, the reliability index, rank analysis, Taylor diagram, accuracy matrix, DDR criterion, AIC criterion, and OBJ criterion are utilised. Based on the experimental results, the hybrid models of ANN and teaching–learning-based optimization (ANN-TLO) perform better in predicting the reliability of cantilever sheet pile walls. The proposed approach can be utilised to quantify the risk associated with such structures in civil engineering projects as an alternative tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Data and material are available upon reasonable request.

Code availability

Code is available upon reasonable request.

References

  1. GuhaRay, A.; Baidya, D.K.: Reliability-based analysis of cantilever sheet pile walls backfilled with different soil types using the finite-element approach. Int. J. Geomech. 15(6), 06015001 (2015). https://doi.org/10.1061/(asce)gm.1943-5622.0000475

    Article  Google Scholar 

  2. INTERNATIONAL STANDARD ISO structures. (2015).

  3. King, G.J.: Analysis of cantilever sheet-pile walls in cohesionless soil. J. Geotech. Eng. 121(9), 629–635 (2015). https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(629)

    Article  Google Scholar 

  4. Singh, A.P.; Chatterjee, K.: Influence of soil type on static response of cantilever sheet pile walls under surcharge loading: a numerical study. Arab. J. Geosci. (2020). https://doi.org/10.1007/s12517-020-5170-x

    Article  Google Scholar 

  5. Georgiadis, M.; Anagnostopoulos, C.: Effect of berms on sheet-pile wall behaviour. Geotechnique 48(4), 569–574 (1998). https://doi.org/10.1680/geot.1998.48.4.569

    Article  Google Scholar 

  6. Gajan, S.: Normalized relationships for depth of embedment of sheet pile walls and soldier pile walls in cohesionless soils. Soils Found. 51(3), 559–564 (2011). https://doi.org/10.3208/sandf.51.559

    Article  Google Scholar 

  7. Viswanadham, B.V.S.; Madabhushi, S.P.G.; Babu, K.V.; Chandrasekaran, V.S.: Modelling the failure of a cantilever sheet pile wall. Int. J. Geotech. Eng. 3(2), 215–231 (2009). https://doi.org/10.3328/IJGE.2009.03.02.215-231

    Article  Google Scholar 

  8. Nataraj, M.S.; Hoadley, P.G.: Design of anchored bulkheads in sands. J. Geotech. Eng. 110(4), 505–515 (1984). https://doi.org/10.1061/(ASCE)0733-9410(1984)110:4(505)

    Article  Google Scholar 

  9. Madabhushi, G.S.P.; Chandrasekaran, V.S.: Rotation of cantilever sheet Pile walls. J. Geotech. Geoenviron. Eng. 131(2), 202–212 (2005). https://doi.org/10.1061/(asce)1090-0241(2005)131:2(202)

    Article  Google Scholar 

  10. Shqip, A. S., Spitaleve, A. S. E., Forum, I., Anti-pole, T. H. E., Utopias, B., Fiction, S., Sheet, C., Wall, P., Clay, P., Reuse, T. H. E., Industrial, O. F., As, H., Approach, A. N., & Restorative, T. O.: Artikuj shkencore shqip kujtesa si hapësirë heterotopike (2017)..

  11. Day, R.A.: Net pressure analysis of cantilever sheet pile walls. Géotechnique 51(2), 185–187 (2001). https://doi.org/10.1680/geot.51.2.185.40282

    Article  Google Scholar 

  12. Babu, G.L.S.; Basha, B.M.: Optimum design of cantilever sheet pile walls in sandy soils using inverse reliability approach. Comput. Geotech. 35(2), 134–143 (2008). https://doi.org/10.1016/j.compgeo.2007.04.001

    Article  Google Scholar 

  13. Kawa, M.; Pula, W.; Suska, M.: Random analysis of bearing capacity of square footing using the LAS procedure. Studia Geotechnica et Mechanica (2016). https://doi.org/10.1515/sgem-2016-0021

    Article  Google Scholar 

  14. Basma, A.A.: Reliability-based design of sheet pile structures. Reliab. Eng. Syst. Saf. 33(2), 215–230 (1990)

    Article  Google Scholar 

  15. Prästings, A.; Larsson, S.; Müller, R.: Transportation Geotechnics Multivariate approach in reliability-based design of a sheet pile wall. Transp Geotech 7, 1–12 (2016). https://doi.org/10.1016/j.trgeo.2016.03.001

    Article  Google Scholar 

  16. Nazari, A., Rajeev, P., & Sanjayan, J. G.: Offshore pipeline performance evaluation by different artificial neural networks approaches. Measur. J. Int. Measur. Confeder., 76, 117–128 (2015). https://doi.org/10.1016/j.measurement.2015.08.035

  17. Kardani, N.; Bardhan, A.; Gupta, S.; Samui, P.; Nazem, M.; Zhang, Y.; Zhou, A.: Predicting permeability of tight carbonates using a hybrid machine learning approach of modified equilibrium optimizer and extreme learning machine. Acta Geotech. (2021). https://doi.org/10.1007/s11440-021-01257-y

    Article  Google Scholar 

  18. Asteris, P.G.; Mamou, A.; Hajihassani, M.; Hasanipanah, M.; Koopialipoor, M.; Le, T.T.; Kardani, N.; Armaghani, D.J.: Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks. Transp. Geotech. 29, 100588 (2021). https://doi.org/10.1016/j.trgeo.2021.100588

    Article  Google Scholar 

  19. Kardani, N.; Zhou, A.; Shen, S.L.; Nazem, M.: Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches. Transp. Geotech. 29, 100591 (2021). https://doi.org/10.1016/j.trgeo.2021.100591

    Article  Google Scholar 

  20. Raja, M.N.A.; Shukla, S.K.: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique. Geotext. Geomembranes 49(5), 1280–1293 (2021)

    Article  Google Scholar 

  21. Raja, M.N.A.; Shukla, S.K.; Khan, M.U.A.: An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil. Int. J. Pavement Eng. (2021). https://doi.org/10.1080/10298436.2021.1904237

    Article  Google Scholar 

  22. Chang, C. M., Lin, T. K., & Chang, C. W (2018) Applications of neural network models for structural health monitoring based on derived modal properties. Measur.: J. Int. Measure. Confederat. 129: 457–470 https://doi.org/10.1016/j.measurement.2018.07.051

  23. Bhawan, A., Delhi, N., Gwalior, M., Road, M. L., & Pradesh, M.: Artificial bee colony algorithm : a survey Jagdish Chand Bansal Harish Sharma * and Shimpi Singh Jadon. 5, 123–159 (2013).

  24. Basu, M.: Artificial bee colony optimization for multi-area economic dispatch. Int. J. Electr. Power Energy Syst. 49(1), 181–187 (2013). https://doi.org/10.1016/j.ijepes.2013.01.004

    Article  Google Scholar 

  25. Maeda, M.; Tsuda, S.: Reduction of artificial bee colony algorithm for global optimization. Neurocomputing 148, 70–74 (2015). https://doi.org/10.1016/j.neucom.2012.06.066

    Article  Google Scholar 

  26. Shi, J.; Li, X.; Khan, F.; Chang, Y.; Zhu, Y.; Chen, G.: Artificial bee colony based bayesian regularization artificial neural network approach to model transient flammable cloud dispersion in congested area. Process Saf. Environ. Prot. 128, 121–127 (2019). https://doi.org/10.1016/j.psep.2019.05.046

    Article  Google Scholar 

  27. Gheysari, K.; Khoei, A.; Mashoufi, B.: High speed ant colony optimization CMOS chip. Expert Syst. Appl. 38(4), 3632–3639 (2011). https://doi.org/10.1016/j.eswa.2010.09.017

    Article  Google Scholar 

  28. Bououden, S.; Chadli, M.; Karimi, H.R.: An ant colony optimization-based fuzzy predictive control approach for nonlinear processes. Inf. Sci. 299, 143–158 (2015). https://doi.org/10.1016/j.ins.2014.11.050

    Article  MathSciNet  MATH  Google Scholar 

  29. Nguyen, D.C.H.; Ascough, J.C.; Maier, H.R.; Dandy, G.C.; Andales, A.A.: Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environ. Model. Softw. 97, 32–45 (2017). https://doi.org/10.1016/j.envsoft.2017.07.002

    Article  Google Scholar 

  30. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  31. Dubey, H.M.; Pandit, M.; Panigrahi, B.K.: Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling. Int. J. Electr. Power Energy Syst. 83, 158–174 (2016). https://doi.org/10.1016/j.ijepes.2016.03.057

    Article  Google Scholar 

  32. Rajan, A., Jeevan, K., & Malakar, T.: Weighted elitism based Ant Lion Optimizer to solve optimum VAr planning problem. In Applied Soft Computing Journal, Elsevier B.V., 55 (2017). https://doi.org/10.1016/j.asoc.2017.02.010

  33. Kanimozhi, G.; Kumar, H.: Modeling of solar cell under different conditions by ant lion optimizer with LambertW function. Appl. Soft Comput. J. 71, 141–151 (2018). https://doi.org/10.1016/j.asoc.2018.06.025

    Article  Google Scholar 

  34. Pradhan, R.; Majhi, S.K.; Pradhan, J.K.; Pati, B.B.: Optimal fractional order PID controller design using ant lion optimizer. Ain Shams Eng. J. 11(2), 281–291 (2020). https://doi.org/10.1016/j.asej.2019.10.005

    Article  Google Scholar 

  35. Lucas, C.; Nasiri-Gheidari, Z.; Tootoonchian, F.: Application of an imperialist competitive algorithm to the design of a linear induction motor. Energy Convers. Manage. 51(7), 1407–1411 (2010). https://doi.org/10.1016/j.enconman.2010.01.014

    Article  Google Scholar 

  36. Enayatifar, R.; Abdullah, A.H.; Lee, M.: A weighted discrete imperialist competitive algorithm (WDICA) combined with chaotic map for image encryption. Opt. Lasers Eng. 51(9), 1066–1077 (2013). https://doi.org/10.1016/j.optlaseng.2013.03.010

    Article  Google Scholar 

  37. Bek, R. U., & Kosolapov, G. V.: The anodic dissolution of gold in alkaline cyanide solutions. Influence of impurities in solution on rate of process at low overpotentials. Izv. Sibir. Otd. Akad. Nauk SSSR, Khim, 2(3), 28–31 (1986).

  38. Muttil, N.; Liong, S.Y.: Superior exploration-exploitation balance in shuffled complex evolution. J. Hydraul. Eng. 130(12), 1202–1205 (2004). https://doi.org/10.1061/(asce)0733-9429(2004)130:12(1202)

    Article  Google Scholar 

  39. Zhao, F.; Zhang, J.; Wang, J.; Zhang, C.: A shuffled complex evolution algorithm with opposition-based learning for a permutation flow shop scheduling problem. Int. J. Comput. Integr. Manuf. 28(11), 1220–1235 (2015). https://doi.org/10.1080/0951192X.2014.961965

    Article  Google Scholar 

  40. Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012). https://doi.org/10.1016/j.ins.2011.08.006

    Article  MathSciNet  Google Scholar 

  41. Sleesongsom, S.; Bureerat, S.: Four-bar linkage path generation through self-adaptive population size teaching-learning based optimization. Knowl.-Based Syst. 135, 180–191 (2017). https://doi.org/10.1016/j.knosys.2017.08.012

    Article  Google Scholar 

  42. Vitayasak, S.; Pongcharoen, P.: Performance improvement of teaching-learning-based optimisation for robust machine layout design. Expert Syst. Appl. 98, 129–152 (2018). https://doi.org/10.1016/j.eswa.2018.01.005

    Article  Google Scholar 

  43. Zou, F.; Chen, D.; Xu, Q.: A survey of teaching–learning-based optimization. Neurocomputing 335, 366–383 (2019). https://doi.org/10.1016/j.neucom.2018.06.076

    Article  Google Scholar 

  44. Ct, A.B.: Reliability-based design of sheet pile structures. Reliab. Eng. Syst. Saf 33, 215–230 (1991)

    Article  Google Scholar 

  45. Acharya, G.; Cochrane, T.A.; Davies, T.; Bowman, E.: The influence of shallow landslides on sediment supply: a flume-based investigation using sandy soil. Eng. Geol. 109, 161–169 (2009). https://doi.org/10.1016/j.enggeo.2009.06.008

    Article  Google Scholar 

  46. Benson, B.C.H.; Member, A.; Zhai, H.; Wang, X.: Estimating hydraulic conductivity of compacted clay liners. J. Geotech. Engrg. 120, 366–387 (1994)

    Article  Google Scholar 

  47. Ni, P.; Li, J.; Hao, H.; Yan, W.; Du, X.; Zhou, H.: Reliability analysis and design optimization of nonlinear structures. Reliab. Eng. Syst. Saf. 198, 106860 (2020). https://doi.org/10.1016/j.ress.2020.106860

    Article  Google Scholar 

  48. Hasofer, A.M.; Lind, N.C.: An exact and invariant first order reliability format". J .Eng. Mech. Div. 100(EM1), 111–121 (1974)

    Article  Google Scholar 

  49. Karaboga, D., & Basturk, B.: Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4529 LNAI (December), 789–798 (2007). https://doi.org/10.1007/978-3-540-72950-1_77.

  50. Blum, C.; López-Ibáñez, M.: Ant colony optimization. Intell. Syst. (2016). https://doi.org/10.4249/scholarpedia.1461

    Article  Google Scholar 

  51. Khanna, K.; Rajpal, N.: Reconstruction of curves from point clouds using fuzzy logic and ant colony optimization. Neurocomputing 161, 72–80 (2015). https://doi.org/10.1016/j.neucom.2014.11.071

    Article  Google Scholar 

  52. Hosseini, S.; Al Khaled, A.: A survey on the Imperialist Competitive Algorithm metaheuristic: implementation in engineering domain and directions for future research. Appl. Soft Comput. 24, 1078–1094 (2014). https://doi.org/10.1016/j.asoc.2014.08.024

    Article  Google Scholar 

  53. Duan, Q.Y.; Gupta, V.K.; Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76(3), 501–521 (1993). https://doi.org/10.1007/BF00939380

    Article  MathSciNet  MATH  Google Scholar 

  54. Rao, R.V.; Savsani, V.J.; Balic, J.: Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng. Optim. 44(12), 1447–1462 (2012). https://doi.org/10.1080/0305215X.2011.652103

    Article  Google Scholar 

  55. Ray, R.; Kumar, D.; Samui, P.; Roy, L.B.; Goh, A.T.C.; Zhang, W.: Application of soft computing techniques for shallow foundation reliability in geotechnical engineering. Geosci. Front. 12(1), 375–383 (2021)

    Article  Google Scholar 

  56. Khan, M.U.A.; Shukla, S.K.; Amjad Raja, M.N.: Soil–conduit interaction: an artificial intelligence application for reinforced concrete and corrugated steel conduits. Neural. Comput. Appl. 33(10), 1–25 (2021). https://doi.org/10.1007/s00521-021-06125-0

    Article  Google Scholar 

  57. Kaloop, M.R.; Bardhan, A.; Kardani, N.; Samui, P.; Hu, J.W.; Ramzy, A.: Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power. Renew. Sustain. Energy Rev. 148, (2021). https://doi.org/10.1016/j.rser.2021.111315

    Article  Google Scholar 

  58. Kardani, N.; T, P.; Samui, P.; Kim, D.; Zhou, A.: Smart phase behavior modeling of asphaltene precipitation using advanced computational frameworks: ENN, GMDH, and MPMR. Pet. Sci. Technol. (2021). https://doi.org/10.1080/10916466.2021.1974882

    Article  Google Scholar 

  59. Jalal, F.E.; Xu, Y.; Iqbal, M.; Jamhiri, B.; Javed F.M.: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms. Transp. Geotech 30, 100608 (2021)

    Article  Google Scholar 

  60. Iqbal, M.; Onyelowe, K.C.; Jalal, F.E.: Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multiscale Multi Model Exp Des (2021). https://doi.org/10.1080/10916466.2021.1974882

    Article  Google Scholar 

  61. Iqbal, M.; Zhao, Q.; Zhang, D.; Jalal, F.E.; Jamal, A.: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models. Mater. Struct. 54(5), 1–20 (2021)

    Article  Google Scholar 

  62. Noori, R.; Khakpour, A.; Omidvar, B.; Farokhnia, A.: Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Syst Appl 37, 5856–5858 (2010). https://doi.org/10.1016/j.eswa.2010.02.020

    Article  Google Scholar 

  63. Gandomi, A.H.; Alavi, A.H.; Sahab, M.G.; Arjmandi, P.: Formulation of elastic modulus of concrete using linear genetic programming. J. Mech. Sci. Technol. 24(6), 1011–1017 (2010). https://doi.org/10.1007/s12206-010-0330-7

    Article  Google Scholar 

  64. Golbraikh, A.; Tropsha, A.: Beware of q 2!. 20, 269–276 (2002).

  65. Roy, P.P.; Roy, K.: On some aspects of variable selection for partial least squares regression models. QCS 3, 302–313 (2008). https://doi.org/10.1002/qsar.200710043

    Article  Google Scholar 

Download references

Funding

The authors confirm that this research work content has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anasua GuhaRay.

Ethics declarations

Conflict of interest

The authors confirm that this research work content has no conflict of interest.

Consent for publication

All authors give their consent for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep, T., GuhaRay, A., Bardhan, A. et al. Reliability and Prediction of Embedment Depth of Sheet pile Walls Using Hybrid ANN with Optimization Techniques. Arab J Sci Eng 47, 12853–12871 (2022). https://doi.org/10.1007/s13369-022-06607-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06607-w

Keywords

Navigation