Skip to main content

Advertisement

Log in

Effects of Cement Grout Characteristics on Formation and Strength of Jet Grouting Columns

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the determination of the rheological properties of cement grouts and the examination of the model jet grouting (JG) columns produced in the laboratory. Fine-grained cement (DMFC-800), ordinary Portland cement (CEM I), natural pozzolana admixtured cement (CEM II) and blast furnace slag (BFS) admixtured cement (CEM III) types were used. Grout mixtures with various water/cement (W/C) ratios were prepared and rheological tests were performed. Effects of cement characteristics and rheological properties of cement grouts on column dimensions, soilcrete strength were researched. Columns with the largest diameter were obtained with DMFC-800 cement. The primary parameter affecting the JG column diameter was cement grain size and the secondary parameter was grout viscosity. CEM III cement provided the highest compressive strength (28.5 MPa) in the long term. DMFC-800 provided remarkable strength (2–5 MPa) even with grouts containing high amount of water (W/C = 2.0–3.0). Grout stability affected the homogeneity of the soilcrete structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kirsch, K.; Bell, A.: Ground Improvement. CRC Press, London (2012)

    Google Scholar 

  2. Njock, P.G.A.; Chen, J.; Modoni, G., et al.: A review of jet grouting practice and development. Arab. J. Geosci. 11(16), 1–31 (2018)

    Article  Google Scholar 

  3. Xanthakos, P.P.; Abramson, L.W.; Bruce. D.A.: Jet grouting. In: Ground Control and Improvement, pp. 581–683. Wiley (1994)

  4. Croce, P.; Flora, A.; Modoni, G.: Brief history of jet grouting. In: Jet Grouting-Technology, Design and Control, pp. 3–4. CRC Press (2014)

  5. Modoni, G.; Bzówka, J.: Analysis of foundations reinforced with jet grouting. J. Geotech. Geoenviron. Eng. 138(12), 1442–1454 (2012)

    Article  Google Scholar 

  6. Ochmański, M.; Modoni, G.; Bzòwka, J.: Numerical analysis of tunnelling with jet-grouted canopy. Soil. Found. 55(5), 929–942 (2015). https://doi.org/10.1016/j.sandf.2015.08.002

    Article  Google Scholar 

  7. Lunardi, P.: Ground improvement by means of jet-grouting. In: Proceedings: Ground Improvement, pp. 65–85. ICE (1997). https://doi.org/10.1680/gi.1997.010201

  8. Croce, P.; Modoni, G.: Design of jet grouting cut-offs. ground ımprovement. In: Proceedings, Institution of Civil Engineers Ground Improvement, vol. 11, no. 1, pp. 11–19 (2007)

  9. Njock, P.G.A.; Shen, J.S.; Modoni, G., et al.: Recent advances in horizontal jet grouting—an overview. Arab. J. Sci. Eng. 43(4), 1543–1560 (2018). https://doi.org/10.1007/s13369-017-2752-3

    Article  Google Scholar 

  10. Modoni, G.; Croce, P.; Mongiovi, L.: Theoretical modelling of jet grouting. Geotechnique 56(5), 335–347 (2006). https://doi.org/10.1680/geot.2006.56.5.335

    Article  Google Scholar 

  11. Shen, S.L.; Wang, Z.F.; Yang, J., et al.: Generalized approach for prediction of jet grout column diameter. J. Geotech. Geoenviron. 139(12), 2060–2069 (2013). https://doi.org/10.1061/(ASCE)Gt.1943-5606.0000932

    Article  Google Scholar 

  12. Ochmański, M.; Modoni, G.; Bzówka, J.: Prediction of the diameter of jet grouting columns with artificial neural networks. Soil. Found. 55(2), 425–436 (2015). https://doi.org/10.1016/j.sandf.2015.02.016

    Article  Google Scholar 

  13. Karahan, G.N.; Sivrikaya, O.: Designing singular jet grouting column for sandy soils. Environ. Earth. Sci. 77(12), 458–469 (2018). https://doi.org/10.1007/s12665-018-7650-9

    Article  Google Scholar 

  14. Flora, A.; Modoni, G.; Lirer, S., et al.: The diameter of single, double and triple fluid jet grouting columns: prediction method and field trial results. Geotechnique 63(11), 934–945 (2013). https://doi.org/10.1680/geot.12.P.062

    Article  Google Scholar 

  15. Akin, M.; Akkaya, I.; Akin, M.K., et al.: Impact of jet-grouting pressure on the strength and deformation characteristics of sandy and clayey soils in the compression zone. KSCE J. Civ. Eng. 23(8), 3340–3352 (2019). https://doi.org/10.1007/s12205-019-2274-5

    Article  Google Scholar 

  16. Tinoco, J.; Correia, A.G.; Cortez, P.: Jet grouting column diameter prediction based on a data-driven approach. Eur. J. Environ. Civ. Eng. 22(3), 338–358 (2018). https://doi.org/10.1080/19648189.2016.1194329

    Article  Google Scholar 

  17. Zebovitz, S.; Krizek, R.J.; Atmatzidis, D.K.: Injection of fine sands with very fine cement grout. J. Geotech. Eng. ASCE. 115(12), 1717–1733 (1989). https://doi.org/10.1061/(ASCE)0733-9410(1989)115:12(1717)

    Article  Google Scholar 

  18. Markou, I.; Droudakis, A.: Factors affecting engineering properties of microfine cement grouted sands. Geotech. Geol. Eng. 31(4), 1041–1058 (2013). https://doi.org/10.1007/s10706-013-9631-9

    Article  Google Scholar 

  19. Helson, O.; Beaucour, A.L.; Eslami, J., et al.: Physical and mechanical properties of soilcrete mixtures: soil clay content and formulation parameters. Constr. Build. Mater. 30(131), 775–783 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.021

    Article  Google Scholar 

  20. ASTM.: Standard test methods for particle size distribution (gradation) of soils using sieve analysis. West Conshohocken: ASTM International.

  21. EN197-1.: Cement: composition, specifications and conformity criteria. European Committee for Standardization.

  22. Zhang, X.; Hanb, J.: The effect of ultra-fine admixture on the rheological property of cement paste. Cem. Concr. Res. 30, 827–830 (2000)

    Article  Google Scholar 

  23. EN-12715.: Execution of special geotechnical work: grouting. British-Adopted European Standard.

  24. Barnes, H.A.; Hutton, J.F.; Walters, K.: An introduction to rheology. In: Walters, K. (ed.) Rheology Series 3, 1st edn. Elsevier (2001)

  25. Wallevik, J.: Rheological properties of cement paste: thixotropic behavior and structural breakdown. Cem. Concr. Res. 39, 14–29 (2009). https://doi.org/10.1016/j.cemconres.2008.10.001

    Article  Google Scholar 

  26. ASTM-C.: 939-02, Standard test method for flow of grout for preplaced aggregate concrete (flow cone method), Annual Book of ASTM Standards. ASTM

  27. Lombardi, G.: The role of cohesion in the cement grouting of rock. In: Proceedings, Fifteenth Congress on Large Dams, Lausanne: International Commission on Large Dams, pp. 235–261 (1985)

  28. ASTM-C.: 940-98a, Standard test method for expansion and bleeding of freshly mixed grouts for preplaced aggregate concrete in the laboratory, Annual Book of ASTM. ASTM

  29. ASTM-C.: 191, Standard Test Method or Time of Setting of Hydraulic Cement by Vicat Needle

  30. Ibrahim, M.; Johari, M.A.M.; Rahman, M.K., et al.: Enhancing the engineering properties and microstructure of room temperature cured alkali activated natural pozzolan based concrete utilizing nanosilica. Constr. Build. Mater. 189, 352–365 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.166

    Article  Google Scholar 

  31. Duxson, P.; Fernandez-Jimenez, A.; Provis, J.L., et al.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007). https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  32. Duxson, P.; Provis, J.L.; Lukey, G.C., et al.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf. A Physicochem. Eng. Aspect. 269(1–3), 47–58 (2005). https://doi.org/10.1016/j.colsurfa.2005.06.060

    Article  Google Scholar 

  33. ASTM-C.: 4219-02, Standard test method for unconfined compressive strength index of chemical-grouted. ASTM

  34. Mollamahmutoglu, M.; Yilmaz, Y.: Engineering properties of medium-to-fine sands injected with microfine cement grout. Mar. Georesour. Geotechnol. 29(2), 95–109 (2011). https://doi.org/10.1080/1064119x.2010.517715

    Article  Google Scholar 

  35. Jiao, D.W.; Shi, C.J.; Yuan, Q., et al.: Effect of constituents on rheological properties of fresh concrete—a review. Cem. Concr. Compos. 83, 146–159 (2017). https://doi.org/10.1016/j.cemconcomp.2017.07.016

    Article  Google Scholar 

  36. Lange, F.; Mortel, H.; Rudert, V.: Dense packing of cement pastes and resulting consequences on mortar properties. Cem. Concr. Res. 27(10), 1481–1488 (1997). https://doi.org/10.1016/S0008-8846(97)00189-0

    Article  Google Scholar 

  37. Chen, J.J.; Kwan, A.K.H.: Superfine cement for improving packing density, rheology and strength of cement paste. Cem. Concr. Compos. 34(1), 1–10 (2012). https://doi.org/10.1016/j.cemconcomp.2011.09.006

    Article  Google Scholar 

  38. Dils, J.; Boel, V.; De Schutter, G.: Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPC. Constr. Build. Mater. 41, 455–463 (2013). https://doi.org/10.1016/j.conbuildmat.2012.12.050

    Article  Google Scholar 

  39. Mork, J.H.; Gjoerv, O.E.: Effect of gypsum-hemihydrate ratio in cement on rheological properties of fresh concrete. ACI Mater. J. 94(2), 142–146 (1997)

    Google Scholar 

  40. Benaicha, M.; Roguiez, X.; Jalbaud, O., et al.: Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of selfcompacting concrete. Constr. Build. Mater. 84(1), 103–110 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.061

    Article  Google Scholar 

  41. Collins, F.; Sanjayan, J.G.: Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder. Cem. Concr. Res. 29(3), 459–462 (1999). https://doi.org/10.1016/S0008-8846(98)00237-3

    Article  Google Scholar 

  42. Ahari, R.S.; Erdem, T.K.; Ramyar, K.: Permeability properties of self-consolidating concrete containing various supplementary cementitious materials. Constr. Build. Mater. 79(15), 326–336 (2015). https://doi.org/10.1016/j.conbuildmat.2015.01.053

    Article  Google Scholar 

  43. Ahari, R.S.; Erdem, T.K.; Ramyar, K.: Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials. Cem. Concr. Compos. 59, 26–37 (2015). https://doi.org/10.1016/j.cemconcomp.2015.03.009

    Article  Google Scholar 

  44. Zhang, X.; Han, J.H.: The effect of ultra-fine admixture on the rheological property of cement paste. Cem. Concr. Res. 30(5), 827–830 (2000). https://doi.org/10.1016/S0008-8846(00)00236-2

    Article  Google Scholar 

  45. Ahari, R.S.; Erdem, T.K.; Ramyar, K.: Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete. Constr. Build. Mater. 75(30), 89–98 (2015). https://doi.org/10.1016/j.conbuildmat.2014.11.014

    Article  Google Scholar 

  46. Park, C.K.; Noh, M.H.; Park, T.H.: Rheological properties of cementitious materials containing mineral admixtures. Cem. Concr. Res. 35(5), 842–849 (2005). https://doi.org/10.1016/j.cemconres.2004.11.002

    Article  Google Scholar 

  47. Tomiolo, A.: Short Course on Soil & Rock Improvement, Techniques Including Geotextiles, Reinforced Earth and Modern Piling Method. Principles of Grouting. Asian Institute of Technology, Thailand (1982)

  48. Mehta, P.K.: Concrete, structure, properties and materials. WJ H (1986)

  49. Pantazopoulos, I.A.; Markou, I.N.; Christodoulou, D.N., et al.: Development of microfine cement grouts by pulverizing ordinary cements. Cem. Concr. Compos. 34(5), 593–603 (2012). https://doi.org/10.1016/j.cemconcomp.2012.01.009

    Article  Google Scholar 

  50. Vipulanandan, C.; Shenoy, S.: Properties of cement grouts and grouted sands with additives. Geotech. Sp. 30, 500–511 (1992)

    Google Scholar 

  51. Perret, S.; Ballivy, G.; Khayat, K.; et al.: Injectability of fine sand with cement-based grout. In: Proceedings, Grouting: Compaction, Remediation and Testing, vol. 66, pp. 289–305 (1997)

  52. Mollamahmutoglu, M.; Avci, E.: Effectiveness of microfine Portland cement grouting on the strength and permeability of medium to fine sands. Period Polytech Civ. 59(3), 319–326 (2015). https://doi.org/10.3311/PPci.7674

    Article  Google Scholar 

  53. Schwarz, L.G.; Chirumalla, M.: Effect of injection pressure on permeability and strength of microfine cement grouted sand. In: Proceedings, Grouting for Ground Improvement: Innovative Concepts and Applications, pp. 1–15 (2007)

  54. Dano, C.; Hicher, P.Y.; Tailliez, S.: Engineering properties of grouted sands. J. Geotech. Geoenviron. 130(3), 328–338 (2004). https://doi.org/10.1061/(Asce)1090-0241(2004)130:3(328)

    Article  Google Scholar 

  55. Schwarz, L.G.; Krizek, R.J.: Effect of preparation technique on permeability and strength of cement-grouted sand. Geotech. Test. J. 17(4), 434–443 (1994). https://doi.org/10.1520/GTJ10304J

    Article  Google Scholar 

  56. Muller, A.C.A.; Scrivener, K.L.; Skibsted, J., et al.: Influence of silica fume on the microstructure of cement pastes: new insights from H-1 NMR relaxometry. Cem. Concr. Res. 74, 116–125 (2015). https://doi.org/10.1016/j.cemconres.2015.04.005

    Article  Google Scholar 

  57. Myers, R.J.; Bernal, S.A.; Gehman, J.D., et al.: The role of al in cross-linking of alkali-activated slag cements. J. Am. Ceram. Soc. 98(3), 996–1004 (2015). https://doi.org/10.1111/jace.13360

    Article  Google Scholar 

  58. Madej, D.: Strontium Retention of Calcium Zirconium Aluminate Cement Paste Studied by NMR. XRD and SEM-EDS. Materials 13(10), 2366 (2020). https://doi.org/10.3390/ma13102366

    Article  Google Scholar 

  59. Rashid, S.; Barnes, P.; Bensted, J., et al.: Conversion of calcium aluminate cement hydrates reexamined with synchrotron energy-dispersive diffraction. J. Mater. Sci. Lett. 13(17), 1232–1234 (1994). https://doi.org/10.1007/Bf00270944

    Article  Google Scholar 

  60. Antonovic, V.; Keriene, J.; Boris, R., et al.: The effect of temperature on the formation of the hydrated calcium aluminate cement structure. Proc. Eng. 57, 99–106 (2013). https://doi.org/10.1016/j.proeng.2013.04.015

    Article  Google Scholar 

  61. Tosun, K.; Baradan, B.: Effect of ettringite morphology on DEF-related expansion. Cem. Concr. Compos. 32(4), 271–280 (2010). https://doi.org/10.1016/j.cemconcomp.2010.01.002

    Article  Google Scholar 

Download references

Acknowledgements

This paper is in the scope of “Determination of the Mechanical Characteristics of Jet Grout Columns Constructed by Using Different Cement Types and Investigation with Ultra Sound Method” Master’s Thesis which was funded by Scientific Research Projects Commission (Grant Number: 191004007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alican Senkaya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senkaya, A., Toka, E.B. & Olgun, M. Effects of Cement Grout Characteristics on Formation and Strength of Jet Grouting Columns. Arab J Sci Eng 47, 13035–13047 (2022). https://doi.org/10.1007/s13369-022-06678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06678-9

Keywords

Navigation