Skip to main content
Log in

Vibrations of Timoshenko Double-Beam Systems with Arbitrary Intermediate Supports and Axial Loads

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Although the double-beam systems are widely utilized, few investigations have been conducted on the general form of the double-beam system, considering shear deformation and rotary inertia. The present paper tackles the free and forced vibrations of the Timoshenko double-beam system with arbitrary intermediate supports and axial loads (TDBS-IS-AL) subjected to arbitrary exciting forces under the general boundary conditions by two methods, i.e., shape function method (SFM) and uncoupled mode shape (UMS) method. The generalized mode shape solutions obtained by the SFM are exact and explicit, based on which the characteristic frequency equations are constructed. Implementing Lagrange’s equation and the modal expansion technique, the dynamic responses (displacement, velocity, and acceleration) of the TDBS-IS-AL are obtained. The natural frequencies and dynamic responses calculated by the UMS are utilized to benchmark the results of SFM. In addition to the theory, illustrating examples are demonstrated to justify the validity of the solutions. It is shown that the results of specific configurations of the double-beam system comply well with the literature. Besides, the frequency and dynamic responses of the SFM are consistent with those of the UMS. The effects of the intermediate support on the vibration characteristics and dynamic responses are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Hussein, M.; Hunt, H.: A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel. J. Sound Vib. 321(1–2), 363–374 (2009)

    Google Scholar 

  2. Choi, Y.; Chao, S.-H.: Analysis and design of double-beam coupling beams. ACI Struct. J. 117(5), 79–95 (2020)

    Google Scholar 

  3. Han, F.; Dan, D.; Deng, Z.: A dynamic stiffness-based modal analysis method for a double-beam system with elastic supports. Mech. Syst. Signal Process. 146, 106978 (2021)

    Google Scholar 

  4. Kessel, P.: Resonances excited in an elastically connected double-beam system by a cyclic moving load. J. Acoust. Soc. Am. 40(3), 684–687 (1966)

    Google Scholar 

  5. Kessel, P.; Raske, T.: Damped response of an elastically connected double-beam system due to a cyclic moving load. J. Acoust. Soc. Am. 42(4), 873–881 (1967)

    MATH  Google Scholar 

  6. Chen, Y.-H.; Lin, C.-Y.: Structural analysis and optimal design of a dynamic absorbing beam. J. Sound Vib. 212(5), 759–769 (1998)

    Google Scholar 

  7. Li, X.; Zhao, X.; Li, Y.: Green’s functions of the forced vibration of Timoshenko beams with damping effect. J. Sound Vib. 333(6), 1781–1795 (2014)

    Google Scholar 

  8. Nguyen, K.V.: Crack detection of a double-beam carrying a concentrated mass. Mech. Res. Commun. 75, 20–28 (2016)

    Google Scholar 

  9. Dublin, M.; Friedrich, H.R.: Forced responses of two elastic beams interconnected by spring-damper systems. J. Aeronaut. Sci. 23(9), 824–829 (1956)

    MATH  Google Scholar 

  10. Douglas, B.; Yang, J.: Transverse compressional damping in the vibratory response of elastic-viscoelastic-elastic beams. AIAA J. 16(9), 925–930 (1978)

    Google Scholar 

  11. Lee, J.; Wang, S.: Vibration analysis of a partially connected double-beam system with the transfer matrix method and identification of the slap phenomenon in the system. Int. J. Appl. Mech. 9(07), 1750093 (2017)

    Google Scholar 

  12. Yoon, J.; Ru, C.; Mioduchowski, A.: Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams. J. Appl. Mech. 72(1), 10–17 (2005)

    MATH  Google Scholar 

  13. Aydogdu, M.: Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. Int. J. Mech. Sci. 50(4), 837–844 (2008)

    MATH  Google Scholar 

  14. Ece, M.; Aydogdu, M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190(1), 185–195 (2007)

    MATH  Google Scholar 

  15. Ansari, R.; Hemmatnezhad, M.: Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dyn. 67(1), 373–383 (2012)

    MathSciNet  Google Scholar 

  16. Seelig, J.; Hoppmann, I.; et al.: Impact on an elastically connected double beam system. Technical report, RENSSELAER POLYTECHNIC INST TROY NY (1963)

  17. Seelig, J.; Hoppmann, W.: Normal mode vibrations of systems of elastically connected parallel bars. J. Acoust. Soc. Am. 36(1), 93–99 (1964)

    Google Scholar 

  18. Rao, S.S.: Natural vibrations of systems of elastically connected Timoshenko beams. J. Acoust. Soc. Am. 55(6), 1232–1237 (1974)

    MATH  Google Scholar 

  19. Chonan, S.: Dynamical behaviours of elastically connected double-beam systems subjected to an impulsive load. Bull. JSME 19(132), 595–603 (1976)

    Google Scholar 

  20. Hyer, M.; Anderson, W.J.; Scott, R.: Non-linear vibrations of three-layer beams with viscoelastic cores I. Theory. J. Sound Vib. 46(1), 121–136 (1976)

    MATH  Google Scholar 

  21. Hyer, M.; Anderson, W.J.; Scott, R.: Non-linear vibrations of three-layer beams with viscoelastic cores, II: experiment. J. Sound Vib. 61(1), 25–30 (1978)

    Google Scholar 

  22. Hamada, T.R.; NAKAYAMA, H.; HAYASHI, K.: Free and forced vibrations of elastically connected double-beam systems. Bull. JSME 26(221), 1936–1942 (1983)

    Google Scholar 

  23. Yamaguchi, H.; Saito, H.: Vibrations of beams with an absorber consisting of a viscoelastic solid and a beam. Earthq. Eng. Struct. Dyn. 12(4), 467–479 (1984)

    Google Scholar 

  24. Sylwan, O.: Shear and compressional damping effects of constrained layered beams. J. Sound Vib. 118(1), 35–45 (1987)

    Google Scholar 

  25. Vaswani, J.; Asnani, N.; Nakra, B.: Vibration and damping analysis of curved sandwich beams with a visoelastic core. Compos. Struct. 10(3), 231–245 (1988)

    Google Scholar 

  26. Yankelevsky, D.Z.: Analysis of a composite layered elastic foundation. Int. J. Mech. Sci. 33(3), 169–177 (1991)

    MATH  Google Scholar 

  27. Kukla, S.: The green function method in frequency analysis of a beam with intermediate elastic supports. J. Sound Vib. 149(1), 154–159 (1991)

    Google Scholar 

  28. Kukla, S.: Free vibrations of axially loaded beams with concentrated masses and intermediate elastic supports. J. Sound Vib. 172(4), 449–458 (1994)

    MATH  Google Scholar 

  29. Aida, T.; Toda, S.; Ogawa, N.; Imada, Y.: Vibration control of beams by beam-type dynamic vibration absorbers. J. Eng. Mech. 118(2), 248–258 (1992)

    Google Scholar 

  30. Frostig, Y.; Baruch, M.: High-order buckling analysis of sandwich beams with transversely flexible core. J. Eng. Mech. 119(3), 476–495 (1993)

    Google Scholar 

  31. Frostig, Y.; Baruch, M.: Free vibrations of sandwich beams with a transversely flexible core: a high order approach. J. Sound Vib. 176(2), 195–208 (1994)

    MATH  Google Scholar 

  32. Mace, M.: Damping of beam vibrations by means of a thin constrained viscoelastic layer: evaluation of a new theory. J. Sound Vib. 172(5), 577–591 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Kawazoe, K.; Kono, I.; Aida, T.; Aso, T.; Ebisuda, K.: Beam-type dynamic vibration absorber comprised of free-free beam. J. Eng. Mech. 124(4), 476–479 (1998)

    Google Scholar 

  34. Chen, Y.-H.; Sheu, J.-T.: Dynamic characteristics of layered beam with flexible core. J. Vib. Acoust. 116, 350–356 (1994)

    Google Scholar 

  35. Cabańska-Płaczkiewicz, K.: Free vibration of the system of two Timoshenko beams coupled by a viscoelastic interlayer. Eng. Trans. 47(1), 21–37 (1999)

    MATH  Google Scholar 

  36. Cabańska-Płaczkiewicz, K.; Pankratova, N.: The dynamic analysis of the system of two beams coupled by an elastic interlayer. Zeszyty Naukowe Katedry Mechaniki Stosowanej/Politechnika Śląska 23–28 (1999)

  37. Vu, H.; Ordonez, A.; Karnopp, B.: Vibration of a double-beam system. J. Sound Vib. 229(4), 807–822 (2000)

    MATH  Google Scholar 

  38. Oniszczuk, Z.: Free transverse vibrations of elastically connected simply supported double-beam complex system. J. Sound Vib. 232(2), 387–403 (2000)

    Google Scholar 

  39. Oniszczuk, Z.: Forced transverse vibrations of an elastically connected complex simply supported double-beam system. J. Sound Vib. 264(2), 273–286 (2003)

    MATH  Google Scholar 

  40. Gaith, M.; Mü ftü, S.: Transverse vibration of two axially moving beams connected by an elastic foundation. In: ASME International Mechanical Engineering Congress and Exposition, vol. 42169, pp. 1833–1840 (2005)

  41. Gaith, M.; Masters, J.; Muftu, S.: Analytical and experimental natural frequencies of transverse vibration of sandwich beams interconnected by Winkler elastic foundation. In: ASME International Mechanical Engineering Congress and Exposition, vol. 47659, pp. 591–596 (2006)

  42. Gaith, M.; Müftü, S.: Lateral vibration of two axially translating beams interconnected by a Winkler Foundation. J. Vib. Acoust. 129(3), 380–385 (2006)

  43. Wang, Q.; Varadan, V.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15(2), 659 (2006)

    Google Scholar 

  44. Abu-Hilal, M.: Dynamic response of a double Euler–Bernoulli beam due to a moving constant load. J. Sound Vib. 297(3–5), 477–491 (2006)

    Google Scholar 

  45. Li, J.; Hua, H.: Spectral finite element analysis of elastically connected double-beam systems. Finite Elem. Anal. Des. 43(15), 1155–1168 (2007)

    MathSciNet  Google Scholar 

  46. Zhang, Y.; Lu, Y.; Ma, G.: Effect of compressive axial load on forced transverse vibrations of a double-beam system. Int. J. Mech. Sci. 50(2), 299–305 (2008)

    MATH  Google Scholar 

  47. Zhang, Y.; Lu, Y.; Wang, S.; Liu, X.: Vibration and buckling of a double-beam system under compressive axial loading. J. Sound Vib. 318(1–2), 341–352 (2008)

    Google Scholar 

  48. Murmu, T.; Adhikari, S.: Nonlocal transverse vibration of double-nanobeam-systems. J. Appl. Phys. 108(8), 083514 (2010)

    Google Scholar 

  49. Murmu, T.; Adhikari, S.: Axial instability of double-nanobeam-systems. Phys. Lett. A 375(3), 601–608 (2011)

    Google Scholar 

  50. Murmu, T.; McCarthy, M.; Adhikari, S.: Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J. Sound Vib. 331(23), 5069–5086 (2012)

    Google Scholar 

  51. Jun, L.; Hongxing, H.; Xiaobin, L.: Dynamic stiffness matrix of an axially loaded slenderdouble-beam element. Struct. Eng. Mech. Int. J. 35(6), 717–733 (2010)

    Google Scholar 

  52. Kozić, P.; Janevski, G.; Pavlović, R.: Moment Lyapunov exponents and stochastic stability of a double-beam system under compressive axial loading. Int. J. Solids Struct. 47(10), 1435–1442 (2010)

    MATH  Google Scholar 

  53. Pavlović, R.; Kozić, P.; Pavlović, I.: Dynamic stability and instability of a double-beam system subjected to random forces. Int. J. Mech. Sci. 62(1), 111–119 (2012)

    Google Scholar 

  54. Pavlović, I.; Pavlović, R.; Kozić, P.; Janevski, G.: Almost sure stochastic stability of a viscoelastic double-beam system. Arch. Appl. Mech. 83(11), 1591–1605 (2013)

    MATH  Google Scholar 

  55. Ariaei, A.; Ziaei-Rad, S.; Ghayour, M.: Transverse vibration of a multiple-Timoshenko beam system with intermediate elastic connections due to a moving load. Arch. Appl. Mech. 81(3), 263–281 (2011)

    MATH  Google Scholar 

  56. Stojanović, V.; Kozić, P.; Pavlović, R.; Janevski, G.: Effect of rotary inertia and shear on vibration and buckling of a double beam system under compressive axial loading. Arch. Appl. Mech. 81(12), 1993–2005 (2011)

    MATH  Google Scholar 

  57. Stojanović, V.; Kozić, P.; Janevski, G.: Buckling instabilities of elastically connected Timoshenko beams on an elastic layer subjected to axial forces. J. Mech. Mater. Struct. 7(4), 363–374 (2012)

    Google Scholar 

  58. Stojanović, V.; Kozić, P.: Forced transverse vibration of Rayleigh and Timoshenko double-beam system with effect of compressive axial load. Int. J. Mech. Sci. 60(1), 59–71 (2012)

    Google Scholar 

  59. Stojanović, V.; Kozić, P.; Janevski, G.: Exact closed-form solutions for the natural frequencies and stability of elastically connected multiple beam system using Timoshenko and high-order shear deformation theory. J. Sound Vib. 332(3), 563–576 (2013)

    Google Scholar 

  60. Mao, Q.: Free vibration analysis of elastically connected multiple-beams by using the Adomian modified decomposition method. J. Sound Vib. 331(11), 2532–2542 (2012)

    Google Scholar 

  61. Mao, Q.; Wattanasakulpong, N.: Vibration and stability of a double-beam system interconnected by an elastic foundation under conservative and nonconservative axial forces. Int. J. Mech. Sci. 93, 1–7 (2015)

    Google Scholar 

  62. Mohammadzadeh, S.; Esmaeili, M.; Mehrali, M.: Dynamic response of double beam rested on stochastic foundation under harmonic moving load. Int. J. Numer. Anal. Methods Geomech. 38(6), 572–592 (2014)

    Google Scholar 

  63. Li, Y.; Sun, L.: Transverse vibration of an undamped elastically connected double-beam system with arbitrary boundary conditions. J. Eng. Mech. 142(2), 04015070 (2016)

    Google Scholar 

  64. Li, Y.; Hu, Z.; Sun, L.: Dynamical behavior of a double-beam system interconnected by a viscoelastic layer. Int. J. Mech. Sci. 105, 291–303 (2016)

    Google Scholar 

  65. Zhang, Z.; Huang, X.; Zhang, Z.; Hua, H.: On the transverse vibration of Timoshenko double-beam systems coupled with various discontinuities. Int. J. Mech. Sci. 89, 222–241 (2014)

    Google Scholar 

  66. Li, X.; Xu, S.; Wu, W.; Li, J.: An exact dynamic stiffness matrix for axially loaded double-beam systems. Sadhana 39(3), 607–623 (2014)

    MathSciNet  MATH  Google Scholar 

  67. Li, Y.; Xiong, F.; Xie, L.; Sun, L.: State-space approach for transverse vibration of double-beam systems. Int. J. Mech. Sci. 189, 105974 (2021)

    Google Scholar 

  68. Mohammadi, N.; Nasirshoaibi, M.: Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load. J. Vibroeng. 17(8), 4545–4559 (2015)

    Google Scholar 

  69. Wu, Y.; Gao, Y.: Dynamic response of a simply supported viscously damped double-beam system under the moving oscillator. J. Sound Vib. 384, 194–209 (2016)

    Google Scholar 

  70. Bochicchio, I.; Giorgi, C.; Vuk, E.: Buckling and nonlinear dynamics of elastically coupled double-beam systems. Int. J. Non-Linear Mech. 85, 161–173 (2016)

    Google Scholar 

  71. Mirzabeigy, A.; Dabbagh, V.; Madoliat, R.: Explicit formulation for natural frequencies of double-beam system with arbitrary boundary conditions. J. Mech. Sci. Technol. 31(2), 515–521 (2017)

    Google Scholar 

  72. Mirzabeigy, A.; Madoliat, R.: Damage detection in a double-beam system using proper orthogonal decomposition and teaching-learning based algorithm. Sci. Iran. 27(2), 757–771 (2020)

    Google Scholar 

  73. Rahman, M.S.; Lee, Y.-Y.: New modified multi-level residue harmonic balance method for solving nonlinearly vibrating double-beam problem. J. Sound Vib. 406, 295–327 (2017)

    Google Scholar 

  74. Deng, H.; Cheng, W.; Zhao, S.; et al.: Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler–Pasternak elastic foundation. Compos. Struct. 160, 152–168 (2017)

    Google Scholar 

  75. Hao, Q.; Zhai, W.; Chen, Z.: Free vibration of connected double-beam system with general boundary conditions by a modified Fourier–Ritz method. Arch. Appl. Mech. 88(5), 741–754 (2018)

    Google Scholar 

  76. Zhang, L.; Ou, Q.; Zhao, M.: Double-beam model to analyze the performance of a pavement structure on geocell-reinforced embankment. J. Eng. Mech. 144(8), 06018002 (2018)

    Google Scholar 

  77. Han, F.; Dan, D.; Cheng, W.: An exact solution for dynamic analysis of a complex double-beam system. Compos. Struct. 193, 295–305 (2018)

    Google Scholar 

  78. Han, F.; Dan, D.; Wei, C.; Jia, P.: Analysis on the dynamic characteristic of a tensioned double-beam system with a semi theoretical semi numerical method. Compos. Struct. 185, 584–599 (2018)

    Google Scholar 

  79. Han, F.; Dan, D.; Cheng, W.: Exact dynamic characteristic analysis of a double-beam system interconnected by a viscoelastic layer. Compos. B Eng. 163, 272–281 (2019)

  80. Han, F.; Dan, D.; Cheng, W.; Zang, J.: A novel analysis method for damping characteristic of a type of double-beam systems with viscoelastic layer. Appl. Math. Model. 80, 911–928 (2020)

    MathSciNet  MATH  Google Scholar 

  81. Zhao, X.: Solution of vibrations of double-beam systems under the general boundary conditions. J. Eng. Mech. (2021). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001953

    Article  Google Scholar 

  82. Liu, S.; Yang, B.: A closed-form analytical solution method for vibration analysis of elastically connected double-beam systems. Compos. Struct. 212, 598–608 (2019)

    Google Scholar 

  83. Kim, G.; Han, P.; An, K.; Choe, D.; Ri, Y.; Ri, H.: Free vibration analysis of functionally graded double-beam system using Haar wavelet discretization method. Eng. Sci. Technol. Int. J. 24, 414–427 (2021)

    Google Scholar 

  84. Kim, K.; Han, P.; Jong, K.; Jang, C.; Kim, R.: Natural frequency calculation of elastically connected double-beam system with arbitrary boundary condition. AIP Adv. 10(5), 055026 (2020)

    Google Scholar 

  85. Zhao, X.; Chen, B.; Li, Y.; Zhu, W.; Nkiegaing, F.; Shao, Y.: Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J. Sound Vib. 464, 115001 (2020)

    Google Scholar 

  86. Abu-Hilal, M.: Forced vibration of Euler–Bernoulli beams by means of dynamic green functions. J. Sound Vib. 267(2), 191–207 (2003)

    MATH  Google Scholar 

  87. Rao, S.S.: Vibration of Continuous Systems, vol. 464. Wiley, New York (2007)

    Google Scholar 

  88. Chapra, S.C.: Applied Numerical Methods: With MATLAB for Engineers and Scientists. McGraw Hill Education, New York (2015)

    Google Scholar 

  89. Chang, P.; Zhao, X.: Exact solution of vibrations of beams with arbitrary translational supports using shape function method. Asian J. Civ. Eng. 21(7), 1269–1286 (2020)

    Google Scholar 

  90. Newmark, N.M.: A method of computation for structural dynamics. J .Eng. Mech. Div. 85(3), 67–94 (1959)

    Google Scholar 

  91. Zhao, X.: Newmarksolvermultiple. https://www.mathworks.com/matlabcentral/fileexchange/84595-newmarksolvermultiple (2020)

  92. Yau, J.; Frỳba, L.: Response of suspended beams due to moving loads and vertical seismic ground excitations. Eng. Struct. 29(12), 3255–3262 (2007)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhuang Zhao.

Ethics declarations

Conflicts of interest/Competing interests

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Jaafaru, H. Vibrations of Timoshenko Double-Beam Systems with Arbitrary Intermediate Supports and Axial Loads. Arab J Sci Eng 48, 5037–5060 (2023). https://doi.org/10.1007/s13369-022-07275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07275-6

Keywords

Navigation