Skip to main content
Log in

Comparative and Statistical Analysis of Core-Calibrated Porosity with Log-Derived Porosity for Reservoir Parameters Estimation of the Zamzama GAS Field, Southern Indus Basin, Pakistan

  • Research Article-earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An accurate estimation of reservoir parameters such as porosity from conventional petrophysics has always been a challenging task for petrophysicists. These inaccuracies can be minimized by incorporating the standardized results obtained from the well-core information for continuous and precise estimates. The goal of the current study is to determine the most appropriate porosity estimation using reliable statistical approaches for the computation of precise reservoir parameters. In this study, characterization of porosity is carried out using root mean squared error and coefficient of variation. Total porosity (\(\phi_{{{\text{NDS}}}}\)) has minimum root mean squared error and coefficient of variation as compared to other porosity estimates. The minimum root mean squared error and coefficient of variation lead to a good prediction model with smaller residuals. In Zamzama-02 Well, the total porosity (\(\phi_{{{\text{NDS}}}}\)) for Pab Formation was derived from the average values of neutron, density and sonic logs data with lower values RMSE (2.81%), and the smaller coefficient of variation (31.48%). Subsequently, the estimated values were calibrated with core-derived porosity and permeability of Pab Formation. This comparison indicates existence of good correlation (R2 = 0.70). Therefore, the computed \(\phi_{{{\text{NDS}}}}\) provides more accurate results of different reservoir parameters including effective porosity, water saturation, and hydrocarbon saturation compared to porosities derived from conventional petrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blackbourn, G.A.: Cores and core logging for geoscientists. Whittles, Dunbeath (2012)

    Google Scholar 

  2. Gluyas, J.; Swarbrick, R.: Petroleum geoscience. Blackwell, Oxford (2004)

    Google Scholar 

  3. Jackson, M.A.; Jellis, R.G.; Hill, R.; Roberson, P.; Woodall, M.A.; Wormald, G.; and Jafri, N.: Zamzama gas field—balancing risk and value, SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, OnePetro, p. SPE-88577-MS (2004)

  4. Umar, M.; Khan, A.S.; Kelling, G.; Friis, H.; Kassi, A.M.: Reservoir attributes of a hydrocarbon-prone sandstone complex: case of the Pab Sandstone (Late Cretaceous) of Southwest Pakistan. Arab. J. Geosci. 9(1), 1–15 (2016)

    Article  Google Scholar 

  5. Worden, R.; Morad, S.: Quartz cementation in sandstones. Wiley (2009)

    Google Scholar 

  6. Director General petroleum concession and landmark resources, map published from upstream Petroleum activities, (2014)

  7. Ashraf, U.; Zhang, H.; Anees, A.; Ali, M.; Zhang, X.; Shakeel Abbasi, S.; Nasir Mangi, H.: Controls on reservoir heterogeneity of a Shallow-Marine reservoir in Sawan gas field, SE Pakistan: implications for reservoir quality prediction using acoustic impedance inversion. Water 12(11), 2972 (2020)

    Article  Google Scholar 

  8. Ashraf, U.; Zhang, H.; Anees, A.; Mangi, H.N.; Ali, M.; Zhang, X.; Imraz, M.; Abbasi, S.S.; Abbas, A.; Ullah, Z.: A core logging, machine learning and geostatistical modeling interactive approach for subsurface imaging of lenticular geobodies in a clastic depositional system, SE Pakistan. Nat. Resour. Res. 30(3), 2807–2830 (2021)

    Article  Google Scholar 

  9. Ashraf, U.; Zhu, P.; Yasin, Q.; Anees, A.; Imraz, M.; Mangi, H.N.; Shakeel, S.: Classification of reservoir facies using well log and 3D seismic attributes for prospect evaluation and field development: a case study of Sawan gas field, Pakistan. J. Pet. Sci. Eng. 175, 338–351 (2019)

    Article  Google Scholar 

  10. Ehsan, M.; Gu, H.: An integrated approach for the identification of lithofacies and clay mineralogy through Neuro-Fuzzy, cross plot, and statistical analyses, from well log data. J. Earth Syst. Sci. 129(1), 101 (2020)

    Article  Google Scholar 

  11. Ehsan, M.; Gu, H.; Ahmad, Z.; Akhtar, M.M.; Abbasi, S.S.: A modified approach for volumetric evaluation of Shaly Sand formations from conventional well logs: a case study from the Talhar Shale, Pakistan. Arab. J. Sci. Eng. 44(1), 417–428 (2019)

    Article  Google Scholar 

  12. Eschard, R.; Albouy, E.; Deschamps, R.; Euzen, T.; Ayub, A.: Downstream evolution of turbiditic channel complexes in the Pab range outcrops (Maastrichtian, Pakistan). Mar. Petrol. Geol. 20(6–8), 691–710 (2003)

    Article  Google Scholar 

  13. Umar, M.; Friis, H.; Khan, A.S.; Kassi, A.M.; Kasi, A.K.: The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Sandstone, Kirthar Fold Belt, southern Pakistan. J. Asian Earth Sci. 40(2), 622–635 (2011)

    Article  Google Scholar 

  14. Umar, M.; Friis, H.; Khan, A.S.; Kelling, G.; Kassi, A.M.; Sabir, M.A.; Farooq, M.: Sediment composition and provenance of the Pab Sandstone, Kirthar fold belt, Pakistan: signatures of hot spot volcanism, source area weathering, and paleogeography on the western passive margin of the Indian plate during the Late Cretaceous. Arab. J. Sci. Eng. 39(1), 311–324 (2014)

    Article  Google Scholar 

  15. Qureshi, M.A.; Ghazi, S.; Riaz, M.; Ahmad, S.: Geo-seismic model for petroleum plays an assessment of the Zamzama area, Southern Indus Basin, Pakistan. J. Pet. Explor. Prod. 11(1), 33–44 (2021)

    Google Scholar 

  16. Ullah, H.; Khalid, P.; Mehmood, M.; Mashwani, S.A.; Abbasi, Z.; Khan, M.J.; Haq, E.U.; Shah, G.M.: 2021, Reservoir potential, net pay zone and 3D modeling of Cretaceous Pab Sandstone in Eastern Suleiman Range, Pakistan. Iran. J. Earth Sci. 13(3), 173–180 (2021)

    Google Scholar 

  17. Bannert, D.; Cheema, A.; Ahmad, A.; Schaffer, U.: The structural development of the Western Pakistan Fold Belt, Pakistan. Geol. Jahrb. Hann. B 80, 3–60 (1992)

    Google Scholar 

  18. Kadri, I.B.: Petroleum geology of Pakistan, Karachi, Pakistan. Pakistan Petroleum Limited (1995)

  19. Scotese, C.R.; Gahagan, L.M.; Larson, R.L.: Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Tectonophysics 155(1–4), 27–48 (1988)

    Article  Google Scholar 

  20. Raza, H.A.; Ahmed, R.; Ali, S.M.; Ahmad, J.: Petroleum prospects: Sulaiman sub-basin, Pakistan. Pak. J. Hydrocarb. Res. 1(2), 21–56 (1989)

    Google Scholar 

  21. Hedley, R.; Warburton, J.; Smewing, J.: Sequence stratigraphy and tectonics in the Kirthar Fold Belt, Pakistan. Proceedings of the SPE-PAPG Annual Technical Conference, Islamabad, Pakistan, pp. 61–72 (2001)

  22. Umar, M.; Khan, A.S.; Kelling, G.; Kassi, A.M.: Depositional environments of Campanian-Maastrichtian successions in the Kirthar Fold Belt, southwest Pakistan: Tectonic influences on late cretaceous sedimentation across the Indian passive margin. Sediment. Geol. 237(1–2), 30–45 (2011)

    Article  Google Scholar 

  23. Kazmi, A.H. and Abbasi, I.A.: Stratigraphy and historical geology of Pakistan, Peshawar, Pakistan. Department and National Centre of Excellence in Geology Peshawar, Pakistan, p. 524 (2008)

  24. Shah, S.M.I.: Stratigraphy of Pakistan. Geological survey of Pakistan, pp. 400 (2009)

  25. Smewing, J.D.; Warburton, J.; Daley, T.; Copestake, P.; Ul-Haq, N.: Sequence stratigraphy of the southern Kirthar fold belt and middle. Tecton. Clim. Evol. Arab. Sea Reg. 195(1), 273–299 (2002)

    Google Scholar 

  26. Lab, C.: Core laboratories 2016 annual report. Core Laboratories (2017)

  27. Luffel, D.L.; Guidry, F.K.: New core analysis methods for measuring reservoir rock properties of Devonian shale. J. Pet. Technol. 44(11), 1184–1190 (1992)

    Article  Google Scholar 

  28. Institute, A.P.: Recommended practices for core analysis, N.W., Washington, D.C. 20005, American Petroleum Institute, p. 236 (1998)

  29. Asquith, G.B. and Gibson, C.R.: Basic well log analysis for geologists. American Association of Petroleum Geologists, USA, p. 234 (1982)

  30. Steiber, R.: Optimization of shale volumes in open hole logs. J. Pet. Technol. 31, 147–162 (1973)

    Google Scholar 

  31. Krygowski, D.A.: Guide to petrophysical interpretation, p. 1–147 (2003)

  32. Wyllie, M.R.J.; Gregory, A.R.; Gardner, G.H.F.: An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23(3), 459–493 (1958)

    Article  Google Scholar 

  33. Rider, M.H.: The geological interpretation of well logs, 3rd edn. Rider-French, Sutherland (2011)

    Google Scholar 

  34. Hill, H.J.; Klein, G.E.; Shirley, O.J.; Thomas, E.C.; Waxman, W.H.: Bound water in Shaly Sands—its relation to Q and other formation properties. Log Anal. 20(3), 1–17 (1979)

    Google Scholar 

  35. Poupon, A.; Leveaux, J.: Evaluation of water saturation in shaly formations, in Proceedings SPWLA 12th Annual Logging Symposium, p. 1–2. Society of Petrophysicists and Well-Log Analysts, Dallas, Texas (1971)

    Google Scholar 

  36. Kolodzie, S., Jr.: Analysis of pore throat size and use of the Waxman-Smits equation to determine ooip. In Spindle Field, Colorado, SPE Annual Technical Conference and Exhibition. OnePetro, Dallas, Texas, p. SPE-9382-MS (1980)

  37. Janssen, P.H.M.; Heuberger, P.S.C.: Calibration of process-oriented models. Ecol. Model. 83(1–2), 55–66 (1995)

    Article  Google Scholar 

  38. Abdi, H.: Coefficient of variation. Encycl. Res. Des. 1, 169–171 (2010)

    Google Scholar 

  39. Cao, J.; Yang, J.; Wang, Y.; Wang, D. and Shi, Y.: Extreme learning machine for reservoir parameter estimation in heterogeneous Sandstone Reservoir. Math. Prob. Eng., p. 287816, (2015)

  40. Taylor, T.R.; Giles, M.R., et al.: Sandstone diagenesis and reservoir quality prediction: models, myths, and reality. AAPG Bull. 94(8), 1093–1132 (2010)

    Article  Google Scholar 

  41. Ijasan, O.; Torres-Verdín, C.; Preeg, W.E.: Estimation of porosity and fluid constituents from neutron and density logs using an interactive matrix scale. Interpretation 1(2), T141–T155 (2013)

    Article  Google Scholar 

  42. Bashir, Y.; Faisal, M.A.; Biswas, A.; Abbas Babasafari, A.; Ali, S.H.; Imran, Q.S.; Siddiqui, N.A.; Ehsan, M.: Seismic expression of miocene carbonate platform and reservoir characterization through geophysical approach: application in central Luconia, offshore Malaysia. J. Pet. Explor. Prod. 11(4), 1533–1544 (2021)

    Google Scholar 

  43. Everitt, B.S. and Skrondal, A.: The Cambridge dictionary of statistics. Cambridge University Press, Cambridge, p. 460 (2010)

  44. Helle, H.B.; Bhatt, A.; Ursin, B.: Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study. Geophys. Prospect. 49(4), 431–444 (2001)

    Article  Google Scholar 

  45. Well log data provided by Directorate General Petroleum Concession (DGPC), Pakistan

Download references

Acknowledgements

We extend our gratitude to Directorate General Petroleum Concession (DGPC), Pakistan, for the provision of Well Logs Data for this research and granting permission for using laboratory data. We thankful to ACS Laboratories, Brisbane and Hydrocarbon Development Institute of Pakistan for providing laboratory facilities. We are also indebted to LMKR Pakistan for facilitating data and software support. This study is funded by the Higher Education Commission, Pakistan, under Grant No. 20-14925/NRPU/R&D/HEC/2021/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhsan Ehsan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, M.N., Zafar, M. & Ehsan, M. Comparative and Statistical Analysis of Core-Calibrated Porosity with Log-Derived Porosity for Reservoir Parameters Estimation of the Zamzama GAS Field, Southern Indus Basin, Pakistan. Arab J Sci Eng 48, 7867–7882 (2023). https://doi.org/10.1007/s13369-022-07523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07523-9

Keywords

Navigation