Skip to main content
Log in

Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Recently, 2-dimensional (2D) transition metal dichalcogenides (TMDs) have received great attention for solar water splitting and electrocatalysis. In addition to their wide variety of electronic and microstructural properties, their promising catalytic activities for hydrogen production make 2D TMDs as earth-abundant and inexpensive catalysts that can replace noble metals. This paper reviews the electronic, structural, and optical properties of 2D TMDs. We highlight the various synthetic methods for 2D TMDs and their applications in hydrogen evolution based on photoelectrochemical and electrocatalytic cells. We also discuss perspectives and challenges of 2D TMDs for hydrogen production and artificial photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. E. Osterloh and B. A. Parkinson, MRS Bull. 36, 17 (2011).

    Google Scholar 

  2. S. S. Mao, S. Shen, and L. Guo, Prog. Nat. Sci. 22, 522 (2012).

    Google Scholar 

  3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. 110, 6446 (2010).

    Google Scholar 

  4. H. J. Gwon, Y. Park, S. Nahm, S. J. Yoon, S. Y. Kim, and H. W. Jang, Nano Res. 7, 670 (2014).

    Google Scholar 

  5. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. 110, 6446 (2010).

    Google Scholar 

  6. Y. Tachibana, L. Vayssieres, and J. R. Durrant, Nat. Photonics 6, 511 (2012).

    Google Scholar 

  7. K. C. Kwon, C. Kim, Q. V. Le, S. Gim, J. M. Jeon, J. Y. Ham, J. L. Lee, H. W. Jang, and S. Y. Kim, ACS Nano 9, 4146 (2105).

    Google Scholar 

  8. T. Hisatomi, J. Kubota, and K. Domen, Chem. Soc. Rev. 45, 7520 (2014).

    Google Scholar 

  9. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).

    Google Scholar 

  10. M. Batzill, Energ. Environ. Sci. 4, 3275 (2011).

    Google Scholar 

  11. F. E. Osterloh, Chem. Matter. 20, 35 (2007).

    Google Scholar 

  12. M. S. Prévot and K. Sivula, J. Phys. Chem. C 117, 17879 (2013).

    Google Scholar 

  13. A. J. Bard and M. A. Fox, Acc. Chem. Res. 28, 14 (1995).

    Google Scholar 

  14. K. S. Joya, Y. F. Joya, K. Ocakoglu, and R. van de Krol, Angew. Chem. Int. Ed. 52, 10426 (2013).

    Google Scholar 

  15. H. S. Kim, K. S. Ahn, and S. H. Kang, Electron. Mater. Lett. 10, 345 (2014).

    Google Scholar 

  16. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, and K. Domen, J. Am. Chem. Soc. 127, 8286 (2005).

    Google Scholar 

  17. H. Zhang, Z. Li, J. Qian, Q. Guan, X. Du, Y. Cui, and J. Zhang, Electron. Mater. Lett. 10, 433 (2014).

    Google Scholar 

  18. A. Stanislaus and B. H. Cooper, Catal. Rev. 36, 75 (1994).

    Google Scholar 

  19. V. Kalikhman and Y. S. Umanskii, Phys-Usp+. 15, 728 (1973).

    Google Scholar 

  20. K. Brandt, Solid State Ionics 69, 173 (1994).

    Google Scholar 

  21. J. Auborn, Y. Barberio, K. Hanson, D. Schleich, and M. Martin, J. Electrochem. Soc. 134, 580 (1987).

    Google Scholar 

  22. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    Google Scholar 

  23. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).

    Google Scholar 

  24. H. Terrones, F. López-Urías, and M. Terrones, Sci. Rep. 3 (2013).

    Google Scholar 

  25. A. Geim and I. Grigorieva, Nature 499, 419 (2013).

    Google Scholar 

  26. G. Wertheim, F. DiSalvo, and D. Buchanan, Solid State Commun. 13, 1225 (1973).

    Google Scholar 

  27. E. Marseglia, Int. Rev. Phys. Chem. 3, 177 (1983).

    Google Scholar 

  28. J. Wilson and A. Yoffe, Adv. Phy. 18, 193 (1969).

    Google Scholar 

  29. F. Jellinek, React. Solid. 5, 323 (1988).

    Google Scholar 

  30. B. Abrams and J. Wilcoxon, Crit. Rev. Solid State 30, 153 (2005).

    Google Scholar 

  31. R. Chianelli, Int. Rev. Phys. Chem. 2, 127 (1982).

    Google Scholar 

  32. L. Mattheiss, Phys. Rev. B 8, 3719 (1973).

    Google Scholar 

  33. L. Mattheiss, Phys. Rev. Lett. 30, 784 (1973).

    Google Scholar 

  34. K. Kobayashi and J. Yamauchi, Phys. Rev. B 51, 17085 (1995).

    Google Scholar 

  35. S. Mahatha, K. Patel, and K. S. Menon, J. Phy-Condens. Mat. 24, 475504 (2012).

    Google Scholar 

  36. H. Jiang, J. Phys. Chem. C 116, 7664 (2012).

    Google Scholar 

  37. M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, and R. Haasch, Nat. Commun. 5, 4470 (2014).

    Google Scholar 

  38. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS Nano 7, 791 (2012).

    Google Scholar 

  39. H. L. Zhuang and R. G. Hennig, J. Phys. Chem. C 117, 20440 (2013).

    Google Scholar 

  40. A. Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83, 245213 (2011).

    Google Scholar 

  41. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Science 340, 1226419 (2013).

    Google Scholar 

  42. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, and R. J. Smith, Science 331, 568 (2011).

    Google Scholar 

  43. M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).

    Google Scholar 

  44. H. Li, J. Wu, Z. Yin, and H. Zhang, Acc. Chem. Res. 47, 1067 (2014).

    Google Scholar 

  45. K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, P. Natl. Acad. Sci. USA 102, 10451 (2005).

    Google Scholar 

  46. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).

    Google Scholar 

  47. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. van der Zant, N. Agraït, and G. Rubio-Bollinger, Nanoscale Res. Lett. 7, 1 (2012).

    Google Scholar 

  48. G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. Shaffer, and J. N. Coleman, ACS Nano 6, 3468 (2012).

    Google Scholar 

  49. P. Joensen, R. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Google Scholar 

  50. M.-R. Gao, Y.-F. Xu, J. Jiang, and S.-H. Yu, Chem. Soc. Rev. 42, 2986 (2013).

    Google Scholar 

  51. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, Angew. Chem. Int. Ed. 50, 11093 (2011).

    Google Scholar 

  52. K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, and H. L. Zhang, Angew. Chem. Int. Ed. 50, 10839 (2011).

    Google Scholar 

  53. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G. S. Duesberg, J. C. Grunlan, and G. Moriarty, Adv. Mater. 23, 3944 (2011).

    Google Scholar 

  54. Y. Min, G. D. Moon, C.-E. Kim, J. Lee, H. Yang, A. Soon, and U. Jeong, J. Mater. Chem. C 2, 6222 (2014).

    Google Scholar 

  55. J. H. Han, S. Lee, and J. Cheon, Chem. Soc. Rev. 42, 2581 (2013).

    Google Scholar 

  56. R. Friend and A. Yoffe, Adv. Phy. 36, 1 (1987).

    Google Scholar 

  57. A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. Popovitz-Biro, E. Wachtel, H. Cohen, S. Reich, and R. Tenne, J. Am. Chem. Soc. 124, 4747 (2002).

    Google Scholar 

  58. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).

    Google Scholar 

  59. R. Chianelli, J. Cryst. Growth, 34, 239 (1976).

    Google Scholar 

  60. M. S. Whittingham, Mater. Res. Bull. 9, 1681 (1974).

    Google Scholar 

  61. G. Protsenko, L. Gumileva, A. Buyanovskaya, and Y. N. Novikov, Russ. Chem. B+ 42, 632 (1993).

    Google Scholar 

  62. M. B. Dines, Science 188, 1210 (1975).

    Google Scholar 

  63. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, Nat. Commun. 5, 2995 (2014).

    Google Scholar 

  64. J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang, and X. Duan, Nano Res. 7, 1 (2014).

    Google Scholar 

  65. R. G. Palgrave and I. P. Parkin, New J. Chem. 30, 505 (2006).

    Google Scholar 

  66. X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, and E. Ringe, ACS Nano 8, 5125 (2014).

    Google Scholar 

  67. A. L. Elías, N. Perea-López, A. S. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, and M. Endo, ACS Nano 7, 5235 (2013).

    Google Scholar 

  68. Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, and L.-J. Li, Nano Lett. 12, 2784 (2012).

    Google Scholar 

  69. J.-G. Song, J. Park, W. Lee, T. Choi, H. Jung, C. W. Lee, S.-H. Hwang, J. M. Myoung, J.-H. Jung, and S.-H. Kim, ACS Nano 7, 11333 (2013).

    Google Scholar 

  70. T. Scharf, S. Prasad, T. Mayer, R. Goeke, and M. Dugger, J. Mater. Res. 19, 3443 (2004).

    Google Scholar 

  71. S. Alfihed, M. Hossain, A. Alharbi, A. Alyamani, and F. H. Alharbi, J. Mater. 2013 (2013).

    Google Scholar 

  72. M. Regula, C. Ballif, J. Moser, and F. Lévy, Thin Solid Films 280, 67 (1996).

    Google Scholar 

  73. A. Jäger-Waldau, M. C. Lux-Steiner, E. Bucher, L. Scandella, A. Schumacher, and R. Prins, Appl. Surf. Sci. 65, 465 (1993).

    Google Scholar 

  74. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8, 966 (2012).

    Google Scholar 

  75. R. R. Chianelli and M. B. Dines, Inorg. Chem. 17, 2758 (1978).

    Google Scholar 

  76. S. Jeong, D. Yoo, J.-T. Jang, M. Kim, and J. Cheon, J. Am. Chem. Soc. 134, 18233 (2012).

    Google Scholar 

  77. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep. 3, 1866 (2013).

    Google Scholar 

  78. A. M. van der Zande,_P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nat. Mater. 12, 554(2013).

    Google Scholar 

  79. Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, J. Am. Chem. Soc. 136, 8504 (2014).

    Google Scholar 

  80. L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, and K. P. Loh, Nanoscale 6, 10584 (2014).

    Google Scholar 

  81. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, J. Catal. 189, 129 (2000).

    Google Scholar 

  82. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005).

    Google Scholar 

  83. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Science 317, 100 (2007).

    Google Scholar 

  84. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Nano Lett. 13, 6222 (2013).

    Google Scholar 

  85. Z. Wu, B. Fang, A. Bonakdarpour, A. Sun, D. P. Wilkinson, and D. Wang, Appl. Catal. B 125, 59 (2012).

    Google Scholar 

  86. L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li, and H. Dai, Angew. Chem. Int. Ed. 53, 7860 (2014).

    Google Scholar 

  87. J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, Nat. Mater. 11, 963 (2012).

    Google Scholar 

  88. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, J. Am. Chem. Soc. 135, 17881 (2013).

    Google Scholar 

  89. Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang, and D. P. Wilkinson, ACS Catal. 3, 2101 (2013).

    Google Scholar 

  90. D. Merki, H. Vrubel, L. Rovelli, S. Fierro, and X. Hu, Chem. Sci. 3, 2515 (2012).

    Google Scholar 

  91. J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, and I. Chorkendorff, Faraday Discuss. 140, 219 (2009).

    Google Scholar 

  92. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, and G. Eda, Nat. Mater. 12, 850 (2013).

    Google Scholar 

  93. S. Jin, M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, and R. Hamers, Energ. Environ. Sci. 7, 2608 (2014).

    Google Scholar 

  94. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, J. Am. Chem. Soc. 135, 10274 (2013).

    Google Scholar 

  95. J. Kim, S. Byun, A. J. Smith, J. Yu, and J. Huang, J. Phys. Chem. Lett. 4, 1227 (2013).

    Google Scholar 

  96. X. Xu, J. Hu, Z. Yin, and C. Xu, ACS Appl. Mater. Interfaces 6, 5983 (2014).

    Google Scholar 

  97. J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla, and H. S. Shin, Angew. Chem. Int. Ed. 52, 13751 (2013).

    Google Scholar 

  98. Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee, and X. Wang, Nanoscale 5, 7768 (2013).

    Google Scholar 

  99. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, and H. Zhang, Small 9, 140 (2013).

    Google Scholar 

  100. Y. Li, Y.-L. Li, C. M. Araujo, W. Luo, and R. Ahuja, Catal. Sci. & Tech. 3, 2214 (2013).

    Google Scholar 

  101. N. Singh, G. Jabbour, and U. Schwingenschlögl, Eur. Phys. J. B 85, 1 (2012).

    Google Scholar 

  102. A. B. Laursen, S. Kegnæs, S. Dahl, and I. Chorkendorff, Energ. Environ. Sci. 5, 5577 (2012).

    Google Scholar 

  103. Y. Liu, Y.-X. Yu, and W.-D. Zhang, J. Phys. Chem. C 117, 12949 (2013).

    Google Scholar 

  104. J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, Energ. Environ. Sci. 4, 3573 (2011).

    Google Scholar 

  105. M. Szklarczyk and J. O. M. Bockris, J. Phys. Chem. 88, 1808 (1984).

    Google Scholar 

  106. B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, Angew. Chem. Int. Ed. 51, 9128 (2012).

    Google Scholar 

  107. A. B. Laursen, T. Pedersen, P. Malacrida, B. Seger, O. Hansen, P. C. Vesborg, and I. Chorkendorff, Phys. Chem. Chem. Phys. 15, 20000 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Won Jang.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andoshe, D.M., Jeon, JM., Kim, S.Y. et al. Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electron. Mater. Lett. 11, 323–335 (2015). https://doi.org/10.1007/s13391-015-4402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4402-9

Keywords

Navigation