Skip to main content
Log in

Green synthesis of silver and zinc oxide nanoparticles for novel application to enhance shelf life of fruits

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Green nanotechnology is fast growing in feasible precision agriculture that assures to refashion food production. This work presents the silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) synthesized by the green synthesis method. The morphology, composition, structure, size, and purity have been confirmed by and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, and photoluminescence (PL). The optical energy band gap for Ag and ZnO NPs was 2.5 eV and 3.5 eV respectively as investigated by UV–visible spectroscopy. The primary goal of this study is to develop eco-friendly biosynthesized nanoparticles that enhance the shelf time of fruits at room temperature. For this purpose, the different concentrations of Ag and ZnO nanostructures (100 ppm, 500 ppm, and 1000 ppm) have been applied to apples and lemons to study the influence on their shelf life. The PWL% and PO are employed by using a 5-point scale to calculate shelf time correctly. Moreover, periodic measurements have been performed over the coated apple and lemon samples to understand the chemistry and physics behind improvements in shelf life. In contrast to Ag NPs, ZnO NPs present low weight loss at 100 ppm and 1000 ppm. The weight loss percentage of lemon showed direct relation with a concentration of ZnO NPs, whereas inverse for the case of Ag NPs due to strong pathogenic effects of ZnO NPs. These nanoparticles can be easily synthesized by using freely available neem leaves and highly useful for the agricultural industry and food sectors around the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bermejo M, Aparicio A, Andrés P, López-Sobaler AM, Ortega RM (2007) The influence of fruit and vegetable intake on the nutritional status and plasma homocysteine levels of institutionalised elderly people. Public Health Nutr. https://doi.org/10.1017/S1368980007246580

  2. Abiad MG, Meho LI (2018) Food loss and food waste research in the Arab world: a systematic review. Food Secur. https://doi.org/10.1007/s12571-018-0782-7

    Article  Google Scholar 

  3. Sandhya (2010) Modified atmosphere packaging of fresh produce: current status and future needs. LWT - Food Sci. Technol. https://doi.org/10.1016/j.lwt.2009.05.018

  4. Ijaz M, Zafar M, Afsheen S, Iqbal T (2020) A review on Ag-nanostructures for enhancement in shelf time of fruits. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01504-x

  5. Ziani K, Fernández-Pan I, Royo M, & Maté JI (2009). Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2009.06.005

  6. Ruffo Roberto S, Youssef K, Hashim AF, Ippolito A (2019) Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials. https://doi.org/10.3390/nano9121752

    Article  Google Scholar 

  7. Sardabi F, Mohtadinia J, Shavakhi F, Jafari AA (2014) The effects of 1-methylcyclopropen (1-MCP) and potassium permanganate coated zeolite nanoparticles on shelf life extension and quality loss of golden delicious apples. J Food Process Preserv. https://doi.org/10.1111/jfpp.12197

    Article  Google Scholar 

  8. Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnology. https://doi.org/10.1186/1477-3155-10-31

    Article  Google Scholar 

  9. Chaudhary A, Kumar N, Kumar R, Salar RK (2019) Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN Appl Sci. https://doi.org/10.1007/s42452-018-0144-2

  10. Naseer M, Aslam U, Khalid B, Chen B (2020) Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep. https://doi.org/10.1038/s41598-020-65949-3

  11. Cai Y, Lim HR, Khoo KS, Ng HS, Cai Y, Wang J, Chan ATY, Show PL (2021) An integration study of microalgae bioactive retention: from microalgae biomass to microalgae bioactives nanoparticle. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2021.112607

    Article  Google Scholar 

  12. Alghuthaymi MA, Ali AA, Hashim AF, Abd-Elsalam KA (2016) A rapid method for the detection of Ralstonia solanacearum by isolation DNA from infested potato tubers based on magnetic nanotools. Philipp Agric Sci. https://doi.org/10.15436/2377-1372.16.744

  13. Sharma S, Jaiswal S, Duffy B, Jaiswal AK (2019) Nanostructured materials for food applications: spectroscopy, microscopy and physical properties. Bioengineering. https://doi.org/10.3390/bioengineering6010026

    Article  Google Scholar 

  14. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. https://doi.org/10.1016/j.matlet.2006.07.042

    Article  Google Scholar 

  15. Ahmad M, Asif S, Klemeš JJ, Mubashir M, Bokhari A, Sultana S, Mukhtar A, Zafar M, Bazmi AA, Khan US, MS, (2022) Conversion of the toxic and hazardous Zanthoxylum armatum seed oil into methyl ester using green and recyclable silver oxide nanoparticles. Fuel. https://doi.org/10.1016/j.fuel.2021.122296

    Article  Google Scholar 

  16. Göl F, Aygün A, Seyrankaya A, Gür T, Yenikaya C, Şen F (2020) Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123037

    Article  Google Scholar 

  17. Gulbagca F, Aygün A, Gülcan M, Ozdemir S, Gonca S, Şen F (2021) Green synthesis of palladium nanoparticles: preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities. Appl Organomet Chem. https://doi.org/10.1002/aoc.6272

    Article  Google Scholar 

  18. Meydan I, Seckin H, Burhan H, Gür T, Tanhaei B, Sen F (2022) Arum italicum mediated silver nanoparticles: synthesis and investigation of some biochemical parameters. Environ Res. https://doi.org/10.1016/j.envres.2021.112347

    Article  Google Scholar 

  19. Taqvi SIH, Solangi AR, Buledi JA, Khand NH, Junejo B, Memon AF, Ameen S, Bhatti A, Show PL, Vasseghian Y, Karimi-Maleh H, (2022) Plant extract-based green fabrication of nickel ferrite (NiFe2O4) nanoparticles: an operative platform for non-enzymatic determination of pentachlorophenol. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.133760

  20. Zafar M, Ijaz M, Iqbal T (2021) Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chem Pap. https://doi.org/10.1007/s11696-020-01465-y

    Article  Google Scholar 

  21. Mubashir M, Dumée LF, Fong YY, Jusoh N, Lukose J, Chai WS, Show PL (2021) Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.125639

    Article  Google Scholar 

  22. Aihara N, Torigoe K, Esumi K (1998) Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir. https://doi.org/10.1021/la980370p

    Article  Google Scholar 

  23. Lin XZ, Teng X, Yang H (2003) Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir. https://doi.org/10.1021/la035185c

    Article  Google Scholar 

  24. Ijaz M, Zafar M, Islam A, Afsheen S, Iqbal T (2020) A review on antibacterial properties of biologically synthesized zinc oxide nanostructures. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01603-9

  25. Ijaz M, Zafar M, Iqbal T (2020) Green synthesis of silver nanoparticles by using various extracts: a review. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2020.1808680

  26. Ijaz M, Zafar M (2021) Titanium dioxide nanostructures as efficient photocatalyst: progress, challenges and perspective. Int J Energy Res. https://doi.org/10.1002/er.6079

    Article  Google Scholar 

  27. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules. https://doi.org/10.3390/molecules16108894

    Article  Google Scholar 

  28. Meydan I, Burhan H, Gür T, Seçkin H, Tanhaei B, Sen F (2022) Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro. Environ Res. https://doi.org/10.1016/j.envres.2021.112363

  29. Seckin H, Tiri RNE, Meydan I, Aygun A, Gunduz MK, Sen F (2022) An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: antioxidant, antibacterial and lipid peroxidation inhibition applications. Environ Res. https://doi.org/10.1016/j.envres.2022.112708

    Article  Google Scholar 

  30. Iqbal T, Raza A, Zafar M, Afsheen S, Kebaili I, Alrobei H (2022) Plant-mediated green synthesis of zinc oxide nanoparticles for novel application to enhance the shelf life of tomatoes. Appl Nanosci. https://doi.org/10.1007/s13204-021-02238-z

  31. Rambabu K, Bharath G, Banat F, Show PL (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123560

    Article  Google Scholar 

  32. de Azeredo HM (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2012.11.006

    Article  Google Scholar 

  33. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed.: Nanotechnol. Biol. Med. https://doi.org/10.1016/j.nano.2010.10.001

  34. Iqbal T, Azhar S, Zafar M, Kiran H, Kebaili I, Alrobei H (2021) Synthesis and characterization of Ag-ZnO nano-composites for investigation of variations in the germination of peanut and kidney beans. Appl Nanosci. https://doi.org/10.1007/s13204-021-02244-1

  35. Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Han HuhYS, YK, (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal. https://doi.org/10.1016/j.jfda.2018.06.011

    Article  Google Scholar 

  36. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  Google Scholar 

  37. Elumalai K., & Velmurugan, S. (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2015.03.176

  38. Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. https://doi.org/10.1155/2014/417305

    Article  Google Scholar 

  39. Venu Gopal VR, Kamila S (2017) Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl Nanosci. https://doi.org/10.1007/s13204-017-0553-3

  40. Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir. https://doi.org/10.1021/la052055q

    Article  Google Scholar 

  41. Pandey BD (2012) Synthesis of zinc-based nanomaterials: a biological perspective. IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2011.0051

    Article  Google Scholar 

  42. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics. https://doi.org/10.1007/s11468-009-9120-4

  43. Roy P, Das B, Mohanty A, Mohapatra S (2017) Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci. https://doi.org/10.1007/s13204-017-0621-8

  44. Ahmed S, Saifullah Ahmad M, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. https://doi.org/10.1016/j.matlet.2016.04.126

    Article  Google Scholar 

  45. He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem. https://doi.org/10.1039/B205214H

    Article  Google Scholar 

  46. Noorjahan CM, Shahina SJ, Deepika T, Rafiq S (2015) Green synthesis and characterization of zinc oxide nanoparticles from Neem (Azadirachta indicia). Int J Sci Eng Technol Res. https://doi.org/10.1063/5.0002093

  47. Fakhari S, Jamzad M, Kabiri Fard H (2019) Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev. https://doi.org/10.1080/17518253.2018.1547925

    Article  Google Scholar 

  48. Jiang Z, Yuan W, Pan H (2005) Luminescence effect of silver nanoparticle in water phase. Spectrochim Acta - A: Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2004.09.014

    Article  Google Scholar 

  49. Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. https://doi.org/10.1007/s13204-015-0449-z

  50. Ghamsari MS, Alamdari S, Razzaghi D, Pirlar MA (2019) ZnO nanocrystals with narrow-band blue emission. J Lumin. https://doi.org/10.1016/j.jlumin.2018.09.064

    Article  Google Scholar 

  51. Vafaee M, Ghamsari MS (2007) Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater Lett. https://doi.org/10.1016/j.matlet.2006.11.089

    Article  Google Scholar 

  52. Alamdari S, Sasani Ghamsari M, Lee C, Han W, Park HH, Tafreshi MJ, Afarideh H, Ara MHM (2020) Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl Sci. https://doi.org/10.3390/app10103620

    Article  Google Scholar 

  53. Niraimathi KL, Sudha V, Lavanya R, Brindha P (2013) Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2012.08.041

  54. Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl. https://doi.org/10.1016/j.jrras.2015.10.002

  55. Parashar UK, Kumar V, Bera T, Saxena PS, Nath G, Srivastava SK, Giri R, Srivastava A (2011) Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology. https://doi.org/10.1088/0957-4484/22/41/415104

    Article  Google Scholar 

  56. Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. https://doi.org/10.1038/s41598-017-15724-8

  57. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2004.02.012

  58. Duran N, Seabra AB (2018) Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Curr Nanosci. https://doi.org/10.2174/1573413714666171207160637

    Article  Google Scholar 

  59. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control. https://doi.org/10.1016/S0196-6553(99)70055-6

    Article  Google Scholar 

  60. Eby DM, Schaeublin NM, Farrington KE, Hussain SM, Johnson GR (2009) Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano. https://doi.org/10.1021/nn900079e

    Article  Google Scholar 

  61. Ankanna STNVKVP, Prasad TNVKV, Elumalai EK, Savithramma N (2010) Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig J Nanomater Biostruct. https://doi.org/10.1007/s10811-012-9851-z

    Article  Google Scholar 

  62. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro Nano Lett. https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  63. Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2014.06.046

    Article  Google Scholar 

  64. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  Google Scholar 

  65. Geethalakshmi R, Sarada DVL (2010) Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti microbial activities. Int J Eng Sci Technol. https://doi.org/10.1016/j.jare.2015.02.007

    Article  Google Scholar 

  66. Gao L, Li Q, Zhao Y, Wang H, Liu Y, Sun Y, Wang F, Jia W, Hou X (2017) Silver nanoparticles biologically synthesised using tea leaf extracts and their use for extension of fruit shelf life. IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2016.0207

    Article  Google Scholar 

  67. Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem. https://doi.org/10.1021/jf900337h

    Article  Google Scholar 

  68. Gudadhe JA, Yadav A, Gade A, Marcato PD, Durán N, Rai M (2014) Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits. IET nanobiotechnol. https://doi.org/10.1016/j.fpsl.2019.100379

    Article  Google Scholar 

  69. Emamifar A, Mohammadizadeh M (2015) Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technol. Biotechnol. https://doi.org/10.17113/ftb.53.04.15.3817

  70. Costa CONTE, Conte A, Buonocore GG, Del Nobile MA (2011) Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2011.05.018

    Article  Google Scholar 

  71. Forato LA, de Britto D, de Rizzo JS, Gastaldi TA, Assis OB (2015) Effect of cashew gum-carboxymethylcellulose edible coatings in extending the shelf-life of fresh and cut guavas. Food Packag. Shelf Life. https://doi.org/10.1016/j.fpsl.2015.06.001

  72. Haile A, Safawo T (2018) Shelf life and quality of tomato (Lycopersicon esculentum Mill.) fruits as affected by different packaging materials. Afr. J. Food Sci. https://doi.org/10.5897/AJFS2017.1568

  73. Abdelmalek GAM, Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. J. Nanomed. Res. https://doi.org/10.15406/jnmr.2016.03.00065

  74. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. https://doi.org/10.1016/j.micres.2010.03.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Maria Zafar: writing—original draft, data curation, validation, project administration. Tahir Iqbal: conceptualization, supervision.

Corresponding authors

Correspondence to Maria Zafar or Tahir Iqbal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M., Iqbal, T. Green synthesis of silver and zinc oxide nanoparticles for novel application to enhance shelf life of fruits. Biomass Conv. Bioref. 14, 5611–5626 (2024). https://doi.org/10.1007/s13399-022-02730-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02730-8

Keywords

Navigation