Skip to main content
Log in

Phytochemical profile of black cumin (Nigella sativa L.) seed oil: identification of bioactive anti-pathogenic compounds for traditional Siddha formulation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Black cumin seed oil has been traditionally used as Karumjeerakam kuzhi thailam (Siddha formulation) in India more than 500 years ago. This study was conducted to find out the bioactive molecules present in black cumin seed oil. The oil was subjected to gas chromatography-mass spectrometry (GC–MS) and liquid chromatography-mass spectrometry (LC–MS) techniques, and the obtained results were compared with the National Institute of Standard Library to identify the presence of chemical compounds. Based on GC–MS and LC–MS analyses, several bioactive compounds were detected such as octanoic acid (m/z 144.21), benzene, 1,3-bis (1,1-dimethyl ethyl) (m/z 190.32), maculosin (m/z 260.1), capric acid (m/z 172.26), 3-ketosphingoshine (m/z 297.3), hygrine (m/z 141.1), tetradecanoic acid, ethyl ester (m/z 256.42), and 2-monomyristin (m/z 302.4). Moreover, the oil was further evaluated for its anti-bacterial activity against both Gram-positive and Gram-negative bacteria and was found that it inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa at a concentration of 10 µg/mL. Besides, molecular docking with capric and caprylic acid from the oil has shown a stable binding affinity with major quorum-sensing proteins. Laetisaric acid showed the best binding scores among the 11 compounds selected for the study with the corresponding receptors. These interactions could provide more insight into understanding the action of the identified compounds on various targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ayurveda in public health. Government of India. Annual Report. New Delhi: Ministry of Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homoeopathy (AYUSH); (2018). Available from: https://ayushportal.nic.in/pdf/ADAY2018.pdf

  2. Janani L, Christian GJ, Gurumanekandan A (2017) Review on external medicines in Siddha system of medicine. Int J Res Pharm Nano Sci 6(1):16–25

    Google Scholar 

  3. Jose SP, Ratheesh M, Sheethal S, Rajan S, Saji S, Narayanan V, et al (2022) Anti-inflammatory effect of Kaba Sura Kudineer (AYUSH approved COVID-19 drug)-A Siddha poly-herbal formulation against lipopolysaccharide induced inflammatory response in RAW-264.7 macrophages cells. J Ethnopharmacol 283:114738

  4. Arunadevi R, Susila R, Murugammal S, Divya S (2020) Preparation and standardization of Mathan Tailam: A classical Siddha formulation for diabetic ulcerative wound healing. J Ayurveda Integr Med 11(1):10–15

    Article  Google Scholar 

  5. Kumar MH, Prabhu K, Rao MR, Shanthi B, Kavimani N, Dinakar S et al (2019) Gas chromatography mass spectrometry analysis of one Ayurvedic skin oil, Eladi Kera Thailam. Drug Invent Today 11(10):2657–2660

    Google Scholar 

  6. Suresh A, Anandan T, Sivanandam G, Veluchamy G (1985) A pilot study of Naayyuruvi kuzhi thailam in Eraippunoi (bronchial asthma). J Res Ayur Sidha 6:171–176

    Google Scholar 

  7. Dubey PN, Singh B, Mishra BK, Kant K, Solanki RK (2016) Nigella (Nigella sativa): a high value seed spice with immense medicinal potential. Indian J Agric Sci 86(18):967–979

    Google Scholar 

  8. Subbarayappa BV (1997) Siddha medicine: an overview. Lancet 350(9090):1841–1844

    Article  Google Scholar 

  9. Gholamnezhad Z, Havakhah S, Boskabady MH (2016) Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: a review. J Ethnopharmacol 190:372–386. https://doi.org/10.1016/j.jep.2016.06.061

    Article  Google Scholar 

  10. Hanafy MS, Hatem ME (1991) Studies on the antimicrobial activity of Nigella sativa seed (black cumin). J Ethnopharmacol 34(2–3):275–278. https://doi.org/10.1016/0378-8741(91)90047-h

    Article  Google Scholar 

  11. Shafi G, Munshi A, Hasan TN, Alshatwi AA, Jyothy A, Lei DK (2009) Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa. Cancer Cell Int 9(1):1–8. https://doi.org/10.1186/1475-2867-9-29

    Article  Google Scholar 

  12. Santiworakun NY, Suksuwan A, Sirikwanpong S, Dahlan W, Ariyapitipun T (2022) Physicochemical characterization of microcapsules containing cold pressed black cumin seed oils (Nigella sativa L.) as an alternative nutrient source in a functional diet. LWT 157:113045. https://doi.org/10.1016/j.lwt.2021.113045

  13. Aljabre SH, Alakloby OM, Randhawa MA (2015) Dermatological effects of Nigella sativa. J Dermatol Dermatol Surg 19(2):92–98. https://doi.org/10.1016/j.jdds.2015.04.002

    Article  Google Scholar 

  14. Gerige SJ, Gerige MK, Rao M (2009) GC-MS Analysis of Nigella sativa seeds and antimicrobial activity of its volatile oil. Braz Arch Biol Technol 52(2):1189–92. https://doi.org/10.1590/S1516-89132009000500016

    Article  Google Scholar 

  15. Ashraf SA, Al-Shammari E, Hussain T, Tajuddin S, Panda BP (2017) In-vitro antimicrobial activity and identification of bioactive components using GC–MS of commercially available essential oils in Saudi Arabia. J Food Sci Technol 54(12):3948–3958. https://doi.org/10.1007/s13197-017-2859-2

    Article  Google Scholar 

  16. Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B Biointerfaces 96:69–74. https://doi.org/10.1016/j.colsurfb.2012.03.023

    Article  Google Scholar 

  17. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZ mine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:1–1

    Article  Google Scholar 

  18. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y et al (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34(8):828–837. https://doi.org/10.1038/nbt.3597

    Article  Google Scholar 

  19. Nair MK, Joy J, Vasudevan P, Hinckley L, Hoagland TA, Venkitanarayanan KS (2005) Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J Dairy Sci 88(10):3488–3495. https://doi.org/10.3168/jds.S0022-0302(05)73033-2

    Article  Google Scholar 

  20. Velusamy P, Das J, Pachaiappan R, Vaseeharan B, Pandian K (2015) Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind Crops Prod 66:103–109

    Article  Google Scholar 

  21. Gould TA, Schweizer HP, Churchill ME (2004) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol 53(4):1135–1146

    Article  Google Scholar 

  22. O’Reilly MC, Dong SH, Rossi FM, Karlen KM, Kumar RS, Nair SK et al (2018) Structural and biochemical studies of non-native agonists of the LasR quorum-sensing receptor reveal an L3 loop “out” conformation for LasR. Cell Chem Biol 25(9):1128–1139

    Article  Google Scholar 

  23. Wang Z, Dong H, Yang L, Yi P, Wang Q, Huang D (2021) The role of FDX1 in granulosa cell of Polycystic ovary syndrome (PCOS). BMC Endocr Disord 21:1–8

    Article  Google Scholar 

  24. Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H et al (2010) Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci U S A 107:11775–11780

    Article  Google Scholar 

  25. Zheng J, Chang MR, Stites RE, Wang Y, Bruning JB, Pascal BD et al (2017) HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. Nat Commun 8(1):1–3

    Article  Google Scholar 

  26. Letavernier E, Daudon M (2018) Vitamin D, hypercalciuria and kidney stones. Nutrients 10(3):366

    Article  Google Scholar 

  27. Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK (1868) Keniya MV (2020) Fungal Lanosterol 14α-demethylase: a target for next-generation antifungal design. Biochim Biophys Acta Proteins Proteom 3:140206

    Google Scholar 

  28. Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P (2018) The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res 19(1):1–8

    Article  Google Scholar 

  29. Cowie BC, Carville KS, MacLachlan JH (2013) Mortality due to viral hepatitis in the global burden of disease study 2010: new evidence of an urgent global public health priority demanding action. Antivir Ther 18(8):953–954

    Article  Google Scholar 

  30. Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, et al (2021) An updated knowledge of Black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. J Herb Med 25:100404. https://doi.org/10.1016/j.hermed.2020.100404

  31. Ahmad N, Ahmad R, Al-Layly A, Al-Shawi H, Al-Ali A, Amir MM et al (2018) Ultra-high-performance liquid chromatography-based identification and quantification of thymoquinone in Nigella sativa extract from different geographical regions. Pharmacogn Mag 14:471

    Article  Google Scholar 

  32. Kesen S, Amanpour A, TsouliSarhir S, Sevindik O, Guclu G, Kelebek H et al (2018) Characterization of aroma-active compounds in seed extract of black cumin (Nigella sativa L.) by aroma extract dilution analysis. Foods 7(7):98. https://doi.org/10.3390/foods7070098

    Article  Google Scholar 

  33. Al-Youssef HM, Hassan WH (2015) Antimicrobial and antioxidant activities of Parkinsonia aculeata and chemical composition of their essential oils. Merit Res J Med Med Sci 3(9):147–157. https://doi.org/10.1016/j.jsps.2020.08.001

    Article  Google Scholar 

  34. Li W, Wang PJ, Shigematsu M, Lu ZG (2011) Chemical composition and antimicrobial activity of essential oil from Amomum tsao-ko cultivated in Yunnan area. Adv Mat Res 183:910–914

    Google Scholar 

  35. Shi D, Zhao Y, Yan H, Fu H, Shen Y, Lu G et al (2016) Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans. Int J Clin Pharmacol Ther 54(5):343. https://doi.org/10.5414/CP202460

    Article  Google Scholar 

  36. Nitbani FO, Siswanta D, Solikhah EN (2016) Isolation and antibacterial activity test of lauric acid from crude coconut oil (Cocos nucifera L.). Procedia Chem 18:132–140. https://doi.org/10.1016/j.proche.2016.01.021

    Article  Google Scholar 

  37. Walters DR, Walker RL, Walker KC (2003) Lauric acid exhibits antifungal activity against plant pathogenic fungi. J Phytopathol 151(4):228–230. https://doi.org/10.1046/j.1439-0434.2003.00713.x

    Article  Google Scholar 

  38. Liu C, Yuan C, Ramaswamy HS, Ren Y, Ren X (2019) Antioxidant capacity and hepatoprotective activity of myristic acid acylated derivative of Phloridzin. Heliyon 5(5):01761. https://doi.org/10.1016/j.heliyon.2019.e01761

    Article  Google Scholar 

  39. Nakatsuji T, Kao MC, Fang JY, Zouboulis CC, Zhang L, Gallo RL et al (2009) Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol 129(10):2480–2488. https://doi.org/10.1038/jid.2009.93

    Article  Google Scholar 

  40. Lagacé L, Charron C, Sadiki M (2017) Analysis of plastic residues in maple sap and syrup collected from tubing systems sanitized with isopropyl alcohol. Heliyon 3:00306

    Article  Google Scholar 

  41. Chandrasekaran M, Senthilkumar A, Venkatesalu V (2011) Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur Rev Med Pharmacol Sci 15(7):775–780

    Google Scholar 

  42. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP (2015) Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complement Altern Med 15:1. https://doi.org/10.1186/s12906-015-0528-4

    Article  Google Scholar 

  43. Ponnamma SU, Manjunath K (2012) GC-MS analysis of phytocomponents in the methanolic extract of Justicia wynaadensis (Nees) T. Anders Int J pharm bio sci 3(3):570–576

    Google Scholar 

  44. Awa EP, Ibrahim S, Ameh DA (2012) GC/MS analysis and antimicrobial activity of diethyl ether fraction of methanolic extract from the stem bark of Annona senegalensis Pers. Int J Pharm Sci Res 3(1):4213. https://doi.org/10.3390/medicines3010003

    Article  Google Scholar 

  45. Widiyarti G, Hanafi M, Soewarso WP (2009) Study on the synthesis of monolaurin as antibacterial agent against Staphylococcus aureus. Indones J Chem 9(1):99–106

    Article  Google Scholar 

  46. Dailey OD, Wang X, Chen F, Huang G (2011) Anticancer activity of branched-chain derivatives of oleic acid. Anticancer Res 31(10):3165–3169

    Google Scholar 

  47. Kim SA, Rhee MS (2015) Synergistic antimicrobial activity of caprylic acid in combination with citric acid against both Escherichia coli O157: H7 and indigenous microflora in carrot juice. Food Microbiol 49:166–172. https://doi.org/10.1016/j.fm.2015.02.009

    Article  Google Scholar 

  48. Soliman MS, Abdella A, Khidr YA, Osman HG, Al-Saman MA, Elsanhoty RM (2021) Pharmacological activities and characterization of phenolic and flavonoid compounds in methanolic extract of Euphorbia cuneate Vahl Aerial Parts. Molecules 26(23):7345. https://doi.org/10.3390/molecules26237345

    Article  Google Scholar 

  49. Nurmala A, Fitria A, Pranowo D, Sholikhah EN, Kurniawan YS, Kuswandi B (2018) Monomyristin and monopalmitin derivatives: synthesis and evaluation as potential antibacterial and antifungal agents. Molecules 23(12):3141. https://doi.org/10.3390/molecules23123141

    Article  Google Scholar 

  50. Vieira C, Evangelista S, Cirillo R, Terracciano R, Lippi A, Maggi CA et al (2002) Antinociceptive activity of ricinoleic acid, a capsaicin-like compound devoid of pungent properties. Eur J Pharmacol 407(1–2):109–116. https://doi.org/10.1016/s0014-2999(00)00727-5

    Article  Google Scholar 

  51. Krishnaveni M, Dhanalakshmi R, Nandhini N (2014) GC-MS analysis of phytochemicals, fatty acid profile, antimicrobial activity of Gossypium seeds. Int J Pharm Sci Rev Res 27(1):273–276

    Google Scholar 

  52. Sahi NM (2016) Evaluation of insecticidal activity of bioactive compounds from Eucalyptus citriodora against Tribolium castaneum. Int J Pharmaco Phytochem Res 8(8):1256–1270

    Google Scholar 

  53. Kim SK, Karadeniz F (2012) Biological importance and applications of squalene and squalane. Adv Food Nutr Res 65:223–233. https://doi.org/10.1016/B978-0-12-416003-3.00014-7

    Article  Google Scholar 

  54. Yakubu OE, Otitoju O, Onwuka J (2017) Gas chromatography-mass spectrometry (GC-MS) analysis of aqueous extract of Daniellia oliveri stem bark. Pharm Analyt Acta 8(11):1–8. https://doi.org/10.4172/2153-2435.1000568

    Article  Google Scholar 

  55. Zaher AM, Moharram AM, Davis R, Panizzi P, Makboul MA, Calderón AI (2015) Characterization of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC–MS/MS. Nat Prod Res 29:2275–2281

    Article  Google Scholar 

  56. Alrumman SA, Mostafa YS, Al-Qahtani ST, Sahlabji T, Taha TH (2019) Antimicrobial activity and GC-MS analysis of bioactive constituents of thermophilic bacteria isolated from Saudi hot springs. Arab J Sci Eng 44(1):75–85

    Article  Google Scholar 

  57. Bravo HR, Weiss-López B, Lamborot M, Copaja S (2003) Chemical basis for the antimicrobial activity of acetanilides. J Chil Chem Soc 48(4):27–30

    Article  Google Scholar 

  58. Keating TA, Lister T, Verheijen JC (2011) New antibacterial agents: patent applications published in 2011. Pharm Pat Ana 87–112, Jan 3

  59. Singh LR, Singh OM (2013) Datura stramonium: An overview of its phytochemistry and pharmacognosy. Res J Pharmacogn Phytochem 5(3):143

    Google Scholar 

  60. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15(3):109–118

    Article  Google Scholar 

  61. Ordonez YF, González J, Bedia C, Casas J, Abad JL, Delgado A et al (2016) 3-Ketosphinganine provokes the accumulation of dihydroshingolipids and induces autophagy in cancer cells. Mol Biosyst 12(4):1166–1173

    Article  Google Scholar 

  62. Kuppala R, Govindarajan M, Tambat R, Patel N, Nandanwar H, Bhutani KK et al (2016) Synthesis and antibacterial activity of ricinoleic acid glycosides. Res Adv 6(5):3700–3713

    Google Scholar 

  63. Surowiak AK, Sowała M, Talma M, Groborz K, Balcerzak L, Lochyński S, Strub DJ (2022) Cytotoxicity, early safety screening, and antimicrobial potential of minor oxime constituents of essential oils and aromatic extracts. Sci Rep 12(1):1–10

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the SRM Management, Department of Biotechnology, School of Bioengineering for providing the instrumental facilities.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Raman Pachaiappan: conceptualization, formal analysis, project administration, resources, supervision, investigation, funding acquisition, validation, writing—original draft preparation, writing—reviewing and editing. Krishnan Nagasathiya: data curation, methodology, visualization, validation, writing—original draft preparation, writing—reviewing and editing. Pinki Kumari Singh: resources, data curation, validation, visualization, writing—reviewing and editing. Allwyn Vyas Gopalakrishnan: resources, validation, visualization, writing—reviewing and editing. Palaniyandi Velusamy: data curation, validation, visualization, writing—reviewing and editing. Kumarasamy Ramasamy: validation, visualization, writing—reviewing and editing. Devadasan Velmurugan: validation, writing—reviewing and editing. Rangasamy Kandasamy: validation, writing—reviewing and editing. Palaniappan Ramasamy: visualization, writing—reviewing and editing. Subash C.B. Gopinath: visualization, writing—reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raman Pachaiappan.

Ethics declarations

Conflict of interest

The authors report that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachaiappan, R., Nagasathiya, K., Singh, P.K. et al. Phytochemical profile of black cumin (Nigella sativa L.) seed oil: identification of bioactive anti-pathogenic compounds for traditional Siddha formulation. Biomass Conv. Bioref. 13, 14683–14695 (2023). https://doi.org/10.1007/s13399-022-02951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02951-x

Keywords

Navigation