Skip to main content

Advertisement

Log in

Static and dynamic mechanical analysis of hybrid natural fibre composites for engineering applications

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Natural fibres (NFs) are utilized for making environment-friendly products inside the construction and automotive industries. Four distinct types of natural fibres, such as jute, sisal, banana, and palm (Asian palmyra) fibres, were treated separately with alkaline and acetylene chemical solutions to improve the strength of fibres. Hand-layup approach was used to fabricate the epoxy composite specimens with natural fibre reinforcement by varying the weight fractions of jute, banana, and palm fibres. Sisal fibres were maintained at a constant weight fraction of 50%. The intention of the existing study is to optimize the dynamic mechanical analysis (DMA) and mechanical performance of three distinct fibres with varying ratios. The mechanical attributes such as tensile strength, flexural strength, impact strength, and hardness values obtained from acetylene-treated samples are estimated at 203 MPa, 186 MPa, 27.7 J/m2, and 108.2. The epoxy matrix’s excellent attachment strengthened and the proper scattering of the alkaline-treated natural fibre samples achieved the best ductile, flexural, hardness, and impact quality compared with acetylene-treated fibre samples. The DMA was used to explore the special mechanical properties of blends in the expression of capacity modulus (E′), loss modulus (E″), and damping boundary. All of these kinds of hybrid composites can also be used in interior applications in the civil and automotive sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included within the article.

References

  1. Kim SJ, Moon JB, Kim GH, Ha CS (2008) Mechanical properties of polypropylene/natural fibre composites: comparison of wood fibre and cotton fibre. Polym Test 27(7):801–806. https://doi.org/10.1016/j.polymertesting.2008.06.002

    Article  Google Scholar 

  2. Goulart SAS, Oliveira TA, Teixeira A, Miléo PC, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced palm fibres composites. Procedia Eng 10:2034–2039. https://doi.org/10.1016/j.proeng.2011.04.337

    Article  Google Scholar 

  3. Velmurugan R, Manikandan V (2007) Mechanical properties of palmyra/glass fibre hybrid composites. Compos Part A Appl Sci Manuf 38(10):2216–2226. https://doi.org/10.1016/j.compositesa.2007.06.006

    Article  Google Scholar 

  4. Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fibre reinforced polyester composites. Compos Sci Technol 63(9):1231–1240. https://doi.org/10.1016/S0266-3538(03)00092-7

    Article  Google Scholar 

  5. Paul SA, Joseph K, Mathew GG, Pothen LA, Thomas S (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fibre and short banana fibre. Compos A Appl Sci Manuf 41(10):1380–1387. https://doi.org/10.1016/j.compositesa.2010.04.015

    Article  Google Scholar 

  6. Benítez AN, Monzón MD, Angulo I, Ortega Z, Hernández PM, Marrero MD (2013) Treatment of banana fibre for use in the reinforcement of polymeric matrices. Measurement 46(3):1065–1073. https://doi.org/10.1016/j.measurement.2012.11.021

    Article  Google Scholar 

  7. Pothan LA, Thomas S, Groeninckx G (2006) The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Compos A Appl Sci Manuf 37(9):1260–1269. https://doi.org/10.1016/j.compositesa.2005.09.001

    Article  Google Scholar 

  8. Pothan LA, George J, Thomas S (2002) Effect of fibre surface treatments on the fibre–matrix interaction in banana fibre reinforced polyester composites. Compos Interfaces 9(4):335–353. https://doi.org/10.1163/156855402760194692

    Article  Google Scholar 

  9. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibres and performance of the resulting biocomposites: An overview. Compos Interfaces 8(5):313–343. https://doi.org/10.1163/156855401753255422

    Article  Google Scholar 

  10. Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibres. Compos Sci Technol 57(1):67–79. https://doi.org/10.1016/S0266-3538(96)00109-1

    Article  Google Scholar 

  11. Gassan J (2002) A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos A Appl Sci Manuf 33(3):369–374. https://doi.org/10.1016/S1359-835X(01)00116-6

    Article  MathSciNet  Google Scholar 

  12. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fibre reinforced polymer composites. Compos B Eng 42(4):856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  Google Scholar 

  13. Joseph PV, Joseph K, Thomas S (1999) Effect of processing variables on the mechanical properties of sisal-fibre-reinforced polypropylene composites. Compos Sci Technol 59(11):1625–1640. https://doi.org/10.1016/S0266-3538(99)00024-X

    Article  Google Scholar 

  14. Li Y, Mai YW, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055. https://doi.org/10.1016/S0266-3538(00)00101-9

    Article  Google Scholar 

  15. Gupta MK, Srivastava RK (2015) Effect of sisal fibre loading on dynamic mechanical analysis and water absorption behaviour of jute fibre epoxy composite. Mater Today Proc 2(4–5):2909–2917. https://doi.org/10.1016/j.matpr.2015.07.253Get

    Article  Google Scholar 

  16. Mishra V, Biswas S (2013) Physical and mechanical properties of bi-directional jute fibre epoxy composites. Procedia Eng 51:561–566. https://doi.org/10.1016/j.proeng.2013.01.079

    Article  Google Scholar 

  17. Venkateshwaran N, Perumal AE, Arunsundaranayagam D (2013) Fibre surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159. https://doi.org/10.1016/j.matdes.2012.12.001

    Article  Google Scholar 

  18. Kalaprasad G, Joseph K, Thomas S (1997) Influence of short glass fibre addition on the mechanical properties of sisal reinforced low density polyethylene composites. J Compos Mater 31(5):509–527. https://doi.org/10.1177/002199839703100504

    Article  Google Scholar 

  19. Nayak NC, Mishra A (2013) Development and mechanical characterization of palmyra fruit fibre reinforced epoxy composites. J Prod Eng 16(2):69–72

    Google Scholar 

  20. Srinivasababu N, Kumar JS, Reddy KVK (2014) Manufacturing and characterization of long palmyra palm/Borassus flabellifer petiole fibre reinforced polyester composites. Procedia Technol 14:252–259. https://doi.org/10.1016/j.protcy.2014.08.033

    Article  Google Scholar 

  21. Kumar SS, Raja VM (2021) Processing and determination of mechanical properties of Prosopis juliflora bark, banana and coconut fibre reinforced hybrid bio composites for an engineering field. Compos Sci Technol 208:108695. https://doi.org/10.1016/j.compscitech.2021.108695

    Article  Google Scholar 

  22. Ramraji K, Rajkumar K, Sabarinathan P (2019) Tailoring of tensile and dynamic thermomechanical properties of interleaved chemical-treated fine almond shell particulate flax fibre stacked vinyl ester polymeric composites. Proc Inst Mech Eng Pt L J Mater Des Appl 233(11):2311–2322. https://doi.org/10.1177/1464420719849616

    Article  Google Scholar 

  23. Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J Arnold Arbor 57(4):450–525

  24. Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fibre–polycarbonate composites. Compos B Eng 40(7):628–632. https://doi.org/10.1016/j.compositesb.2009.04.008

    Article  Google Scholar 

  25. George S, Venkataraman G, Parida A (2007) Identification of stress-induced genes from the drought-tolerant plant Prosopis juliflora (Swartz) DC. through analysis of expressed sequence tags. Genome 50(5):470–478. https://doi.org/10.1139/G07-014

  26. Lai CY, Sapuan SM, Ahmad M, Yahya N, Dahlan KZHM (2005) Mechanical and electrical properties of coconut coir fibre-reinforced polypropylene composites. Polym Plast Technol Eng 44(4):619–632. https://doi.org/10.1081/PTE-200057787

    Article  Google Scholar 

  27. Sumesh KR, Kanthavel K (2020) Effect of TiO2 nano-filler in mechanical and free vibration damping behavior of hybrid natural fibre composites. J Braz Soc Mech Sci Eng 42(4):1–12. https://doi.org/10.1007/s40430-020-02308-3

    Article  Google Scholar 

  28. Karnani R, Krishnan M, Narayan R (1997) Biofibre-reinforced polypropylene composites. Polym Eng Sci 37(2):476–483. https://doi.org/10.1002/pen.11691

    Article  Google Scholar 

  29. Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59(9):1303–1309. https://doi.org/10.1016/S0266-3538(98)00169-9

    Article  Google Scholar 

  30. Abdul Khalil HPS, Masri M, Saurabh CK, Fazita MRN, Azniwati AA, Aprilia NS, Dungani R (2017) Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites. Mater Res Express 4(3):035020. https://doi.org/10.1088/2053-1591

    Article  Google Scholar 

  31. Siddika S, Mansura F, Hasan M, Hassan A (2014) Effect of reinforcement and chemical treatment of fibre on the properties of jute-coir fibre reinforced hybrid polypropylene composites. Fibres Polym 15(5):1023–1028

    Article  Google Scholar 

  32. David Gnanaraj J, Mothilal S, Vignesh V, Karthick T, Ismail SO, Rajini N, ... Mohammad F (2022) Investigation into mechanical, thermal and water absorption behaviors of cocos nucifera shell filler reinforced vinyl ester polymeric composites. J Polym Environ 30(5):2142–2154

  33. Nagaprasad N, Vignesh V, KarthikBabu NB, Manimaran P, Stalin B, Ramaswamy K (2022) Effect of green hybrid fillers loading on mechanical and thermal properties of vinyl ester composites. Polym Compos 40(11):7928–7939

    Article  Google Scholar 

  34. Gupta MK, Srivastava RK (2016) Properties of sisal fibre reinforced epoxy composite. 41:235–241 

  35. Wongsriraksa P, Togashi K, Nakai A, Hamada H (2013) Continuous natural fibre reinforced thermoplastic composites by fibre surface modification. Adv Mech Eng 5:685104. https://doi.org/10.1155/2013/685104

    Article  Google Scholar 

  36. Gideon R, Atalie D (2022) Mechanical and Water Absorption Properties of Jute/Palm Leaf Fibre-Reinforced Recycled Polypropylene Hybrid Composites. Int J Polym Sci 2022. https://doi.org/10.1155/2022/4408455

  37. Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Appl Sci Manuf 43:1431–1440. https://doi.org/10.1016/j.compositesa.2012.04.007

    Article  Google Scholar 

  38. Herrera-Franco P, Valadez-Gonzalez A (2005) A study of the mechanical properties of short natural-fibre reinforced composites. Compos B Eng 36(8):597–608. https://doi.org/10.1016/j.compositesb.2005.04.001

    Article  Google Scholar 

  39. Mishra S, Naik JB (2005) Effect of treatment of maleic anhydride on mechanical properties of natural fibre: polystyrene composites. Polym Plast Technol Eng 44:663e675. https://doi.org/10.1081/PTE-200057814

  40. Sood M, Dwivedi G (2018) Effect of fibre treatment on flexural properties of natural fibre reinforced composites: A review. Egypt J Pet 27(4):775–783. https://doi.org/10.1016/j.ejpe.2017.11.005

    Article  Google Scholar 

  41. Sarikaya E, Çallioglu H, Demirel H (2019) Production of epoxy composites rein- forced by different natural fibres and their mechanical properties. Compos B Eng 167: 461e466. https://doi.org/10.1016/j.compositesb.2019.03.020

  42. Kumaar AS, Senthilkumar A, Saravanakumar SS, Senthamaraikannan P, Loganathan L, Muthu Chozha Rajan B (2022) Mechanical properties of alkali-treated carica papaya fibre-reinforced epoxy composites. J Natural Fibres 19(1):269–279. https://doi.org/10.1080/15440478.2020.1739590

    Article  Google Scholar 

  43. Pisanova E, Mader E (2000) Acid–base interactions and covalent bonding at a fibre–matrix interface: Contribution to the work of adhesion and measured adhesion strength. J Adhes Sci Technol 14(3):415–436. https://doi.org/10.1163/156856100742681

    Article  Google Scholar 

  44. George J, Verpoest JII (1999) Mechanical properties of flax fibre reinforced epoxy composites. Die Angew Makromol Chem 272(1):41–45. https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1%3c41::AID-APMC41%3e3.0.CO;2-X

    Article  Google Scholar 

  45. Gopinath A, Senthil Kumar M, Elayaperumal A (2014) Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Engineering 97:2052–2063

  46. Reddy N, Yang Y (2009) Properties and potential applications of natural cellulose fibres from the bark of cotton stalks. Biores Technol 100(14):3563–3569. https://doi.org/10.1016/j.biortech.2009.02.047

    Article  Google Scholar 

  47. Tajvidi M (2005) Static and dynamic mechanical properties of a kenaf fibre–wood flour/polypropylene hybrid composite. J Appl Polym Sci 98(2):665–672. https://doi.org/10.1002/app.22093

    Article  Google Scholar 

  48. Hashmi SAR, Dwivedi UK, Chand N (2007) Graphite modified cotton fibre reinforced polyester composites under sliding wear conditions. Wear 262:1426e1432. https://doi.org/10.1016/j.wear.2007.01.014.

  49. Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinf Plast Compos 31(6):425–437. https://doi.org/10.1177/0731684412439494

    Article  Google Scholar 

  50. Akay M (1993) Aspects of dynamic mechanical analysis in polymeric composites. Compos Sci Technol 47(4):419–423

    Article  Google Scholar 

  51. Kuzak SG, Shanmugam A (1999) Dynamic mechanical analysis of fibre-reinforced phenolics. J Appl Polym Sci 73(5):649–658. https://doi.org/10.1002/(SICI)1097-4628(19990801)73:5%3c649::AID-APP5%3e3.0.CO;2-B

    Article  Google Scholar 

  52. Deeraj BDS, Harikrishnan R, Jayan JS, Saritha A, Joseph K (2020) Enhanced visco-elastic and rheological behavior of epoxy composites reinforced with polyimide nanofibre. Nano-Struct Nano-Objects 21:100421. https://doi.org/10.1016/j.nanoso.2019.100421

    Article  Google Scholar 

  53. Oliveira MS, da Luz FS, da Costa Garcia Filho F, Pereira AC, de Oliveira Aguiar V, Lopera HAC, Monteiro SN (2021) Dynamic Mechanical Analysis of Thermally Aged Fique Fabric-Reinforced Epoxy Composites. Polymers 13(22):4037. https://doi.org/10.3390/polym13224037

    Article  Google Scholar 

  54. Khalid MY, Al Rashid A, Arif ZU, Ahmed W, Arshad H, Zaidi AA (2021) Natural fibre reinforced composites: Sustainable materials for emerging applications. Results Eng 11:100263. https://doi.org/10.1016/j.rineng.2021.100263

    Article  Google Scholar 

  55. Ahmad F, Yuvaraj N, Bajpai PK (2021) Influence of reinforcement architecture on static and dynamic mechanical properties of flax/epoxy composites for structural applications. Compos Struct 255:112955. https://doi.org/10.1016/j.compstruct.2020.112955

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Sathees Kumar: Conceptualization, supervision, and reviewing. V. Vignesh: Supervision, writing—editing and reviewing. VVSH Prasad: Experimental operation, data interpretation. BDY Sunil: Synthesis, characterization, data curation and interpretation, and writing—original draft. Regonda Srinivas: Data curation and interpretation, writing—original draft, reviewing, and editing. Mohamed Sanjay M R: Methodology, validation, and writing—original draft, reviewing, and editing. Suchart Siengchin: Conceptualization, supervision, and reviewing.

Corresponding author

Correspondence to V. Vignesh.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.S., Vignesh, V., Prasad, V.V.S.H. et al. Static and dynamic mechanical analysis of hybrid natural fibre composites for engineering applications. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-022-03689-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03689-2

Keywords

Navigation