Skip to main content

Advertisement

Log in

The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

5′ adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor.

Methods

High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation.

Results

We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux.

Conclusions

The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Complete ChIP-seq data are available at NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/) under GSE148358.

Abbreviations

ACC1:

acetyl-CoA carboxylase 1

AMP:

adenosine monophosphate

AMPK:

5′ adenosine monophosphate-activated kinase

AR:

androgen receptor

ATP:

adenosine triphosphate

ATCC:

American Type Culture Collection

CAMKK2:

calcium-calmodulin-dependent kinase 2

ChIP-seq:

chromatin immunoprecipitation DNA-sequencing

CPT1:

carnitine palmitoyl-transferase 1

CRY1:

cryptochrome 1

FASN:

fatty acid synthase

DSMZ:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

GST:

glutathione-S-transferase

HMGCR:

3-hydroxy-3-methyl-glutaryl-coenzyme A reductase

HTRF:

homogeneous time-resolved fluorescence

LIPE:

lipase E

LKB1:

liver kinase B1

PFKFB2:

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2

PPARGC1B:

peroxisome proliferator-activated receptor gamma coactivator 1-beta

PPP2CB:

serine/threonine-protein phosphatase 2A catalytic subunit beta isoform

PRKAR2B:

cAMP-dependent protein kinase type II-beta regulatory subunit

RSK:

ribosomal S6 kinase

SREBF1:

sterol regulatory element-binding transcription factor 1

TET2:

ten-eleven translocation 2

TR-FRET:

time-resolved fluorescence resonance energy transfer

ULK1:

autophagy activating kinase 1

References

  1. F.A. Ross, C. MacKintosh, D.G. Hardie, AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours. FEBS J. 283, 2987–3001 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D.G. Hardie, B.E. Schaffer, A. Brunet, AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26, 190–201 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. D. Carling, AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31–37 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. D.G. Hardie, Keeping the home fires burning: AMP-activated protein kinase. J. R. Soc. Interface 15, 20170774 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. D.G. Hardie, S.C. Lin, AMP-activated protein kinase - not just an energy sensor. F1000Res 6, 1724 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  6. L. Kullmann, M.P. Krahn, Controlling the master-upstream regulation of the tumor suppressor LKB1. Oncogene 37, 3045–3057 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. M.R. Munday, C.J. Hemingway, The regulation of acetyl-CoA carboxylase--a potential target for the action of hypolipidemic agents. Adv. Enzym. Regul. 39, 205–234 (1999)

    Article  CAS  Google Scholar 

  8. D. Wu, D. Hu, H. Chen, G. Shi, I.S. Fetahu, F. Wu, K. Rabidou, R. Fang, L. Tan, S. Xu, H. Liu, C. Argueta, L. Zhang, F. Mao, G. Yan, J. Chen, Z. Dong, R. Lv, Y. Xu, M. Wang, Y. Ye, S. Zhang, D. Duquette, S. Geng, C. Yin, C.G. Lian, G.F. Murphy, G.K. Adler, R. Garg, L. Lynch, P. Yang, Y. Li, F. Lan, J. Fan, Y. Shi, Y.G. Shi, Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Umezawa, T. Higurashi, A. Nakajima, AMPK: Therapeutic target for diabetes and cancer prevention. Curr. Pharm. Des. 23, 3629–3644 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. H.M. Haikala, J.M. Anttila, J. Klefstrom, MYC and AMPK-Save energy or die! Front. Cell. Dev. Biol. 5, 38 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  11. S. Olivier, M. Foretz, B. Viollet, Promise and challenges for direct small molecule AMPK activators. Biochem. Pharmacol. 153, 147–158 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. A.S. Khan, D.E. Frigo, A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat. Rev. Urol. 14, 164–180 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D.E. Frigo, M.K. Howe, B.M. Wittmann, A.M. Brunner, I. Cushman, Q. Wang, M. Brown, A.R. Means, D.P. McDonnell, CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res. 71, 528–537 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. P. Popovics, D.E. Frigo, A.V. Schally, F.G. Rick, Targeting the 5'-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer. Expert Opin. Ther. Targets 19, 617–632 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. D. Awad, T.L. Pulliam, C. Lin, S.R. Wilkenfeld, D.E. Frigo, Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Curr. Opin. Pharmacol. 41, 1–11 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. C.E. Massie, A. Lynch, A. Ramos-Montoya, J. Boren, R. Stark, L. Fazli, A. Warren, H. Scott, B. Madhu, N. Sharma, H. Bon, V. Zecchini, D.M. Smith, G.M. Denicola, N. Mathews, M. Osborne, J. Hadfield, S. Macarthur, B. Adryan, S.K. Lyons, K.M. Brindle, J. Griffiths, M.E. Gleave, P.S. Rennie, D.E. Neal, I.G. Mills, The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719–2733 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L.G. Karacosta, B.A. Foster, G. Azabdaftari, D.M. Feliciano, A.M. Edelman, A regulatory feedback loop between Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and the androgen receptor in prostate cancer progression. J. Biol. Chem. 287, 24832–24843 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.B. Tennakoon, Y. Shi, J.J. Han, E. Tsouko, M.A. White, A.R. Burns, A. Zhang, X. Xia, O.R. Ilkayeva, L. Xin, M.M. Ittmann, F.G. Rick, A.V. Schally, D.E. Frigo, Androgens regulate prostate cancer cell growth via an AMPK-PGC-1alpha-mediated metabolic switch. Oncogene 33, 5251–5261 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Choudhury, Z. Yang, I. Ahmad, C. Nixon, I.P. Salt, H.Y. Leung, AMP-activated protein kinase (AMPK) as a potential therapeutic target independent of PI3K/Akt signaling in prostate cancer. Oncoscience 1, 446–456 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  20. R.R. Chhipa, Y. Wu, C. Ip, AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell. Signal. 23, 1466–1472 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Santha, N. Viswakarma, S. Das, A. Rana, B. Rana, Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-Troglitazone-induced apoptosis in prostate cancer cells involve AMP-activated protein kinase. J. Biol. Chem. 290, 21865–21875 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H.U. Park, S. Suy, M. Danner, V. Dailey, Y. Zhang, H. Li, D.R. Hyduke, B.T. Collins, G. Gagnon, B. Kallakury, D. Kumar, M.L. Brown, A. Fornace, A. Dritschilo, S.P. Collins, AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol. Cancer Ther. 8, 733–741 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Jurmeister, A. Ramos-Montoya, D.E. Neal, L.G. Fryer, Transcriptomic analysis reveals inhibition of androgen receptor activity by AMPK in prostate cancer cells. Oncotarget 5, 3785–3799 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  24. G. Zadra, C. Photopoulos, S. Tyekucheva, P. Heidari, Q.P. Weng, G. Fedele, H. Liu, N. Scaglia, C. Priolo, E. Sicinska, U. Mahmood, S. Signoretti, N. Birnberg, M. Loda, A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med. 6, 519–538 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Penfold, A. Woods, P. Muckett, A.Y. Nikitin, T.R. Kent, S. Zhang, R. Graham, A. Pollard, D. Carling, CAMKK2 promotes prostate cancer independently of AMPK via increased lipogenesis. Cancer Res. 78, 6747–6761 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C.H. Arrowsmith, J.E. Audia, C. Austin, J. Baell, J. Bennett, J. Blagg, C. Bountra, P.E. Brennan, P.J. Brown, M.E. Bunnage, C. Buser-Doepner, R.M. Campbell, A.J. Carter, P. Cohen, R.A. Copeland, B. Cravatt, J.L. Dahlin, D. Dhanak, A.M. Edwards, M. Frederiksen, S.V. Frye, N. Gray, C.E. Grimshaw, D. Hepworth, T. Howe, K.V. Huber, J. Jin, S. Knapp, J.D. Kotz, R.G. Kruger, D. Lowe, M.M. Mader, B. Marsden, A. Mueller-Fahrnow, S. Muller, R.C. O'Hagan, J.P. Overington, D.R. Owen, S.H. Rosenberg, B. Roth, R. Ross, M. Schapira, S.L. Schreiber, B. Shoichet, M. Sundstrom, G. Superti-Furga, J. Taunton, L. Toledo-Sherman, C. Walpole, M.A. Walters, T.M. Willson, P. Workman, R.N. Young, W.J. Zuercher, The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015)

  27. K. Kuramoto, H. Yamada, T. Shin, Y. Sawada, H. Azami, T. Yamada, T. Nagashima, K. Ohnuki, Development of a potent and orally active activator of adenosine monophosphate-activated protein kinase (AMPK), ASP4132, as a clinical candidate for the treatment of human cancer. Bioorg. Med. Chem. 28, 115307 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. J. Bain, L. Plater, M. Elliott, N. Shpiro, C.J. Hastie, H. McLauchlan, I. Klevernic, J.S. Arthur, D.R. Alessi, P. Cohen, The selectivity of protein kinase inhibitors: A further update. Biochem. J. 408, 297–315 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L.G. Fryer, A. Parbu-Patel, D. Carling, Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside. FEBS Lett. 531, 189–192 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. J.W. Scott, S. Galic, K.L. Graham, R. Foitzik, N.X. Ling, T.A. Dite, S.M. Issa, C.G. Langendorf, Q.P. Weng, H.E. Thomas, T.W. Kay, N.C. Birnberg, G.R. Steinberg, B.E. Kemp, J.S. Oakhill, Inhibition of AMP-activated protein kinase at the allosteric drug-binding site promotes islet insulin release. Chem. Biol. 22, 705–711 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. F.A. Ross, S.A. Hawley, F.R. Auciello, G.J. Gowans, A. Atrih, D.J. Lamont, D.G. Hardie, Mechanisms of paradoxical activation of AMPK by the kinase inhibitors SU6656 and sorafenib. Cell. Chem. Biol. 24, 813–824 e814 (2017)

  32. T.A. Dite, C.G. Langendorf, A. Hoque, S. Galic, R.J. Rebello, A.J. Ovens, L.M. Lindqvist, K.R.W. Ngoei, N.X.Y. Ling, L. Furic, B.E. Kemp, J.W. Scott, J.S. Oakhill, AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. J. Biol. Chem. 293, 8874–8885 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D.F. Egan, M.G. Chun, M. Vamos, H. Zou, J. Rong, C.J. Miller, H.J. Lou, D. Raveendra-Panickar, C.C. Yang, D.J. Sheffler, P. Teriete, J.M. Asara, B.E. Turk, N.D. Cosford, R.J. Shaw, Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285–297 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C.J. Matheson, K.A. Casalvieri, D.S. Backos, M. Minhajuddin, C.T. Jordan, P. Reigan, Substituted oxindol-3-ylidenes as AMP-activated protein kinase (AMPK) inhibitors. Eur. J. Med. Chem. 197, 112316 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. V.K. Schulze, T. Heinrich, C. Christ, H. Briem, A.C. Faria Alvares de Lemos, B. Bader, S. Holton, U. Bömer, P. Lienau, L.P. Kuhnke, 4-(3-amino-6-fluoro-1H-indazol-5-yl)-1,2,6-trimethyl-1,4-dihydropyridine-3,5-dicarbonitrile compounds for treating hyperproliferative disorders. Patent application WO2019/185525 A1 (2019)

  36. J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A.A. Margolin, S. Kim, C.J. Wilson, J. Lehar, G.V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M.F. Berger, J.E. Monahan, P. Morais, J. Meltzer, A. Korejwa, J. Jane-Valbuena, F.A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A. Shipway, I.H. Engels, J. Cheng, G.K. Yu, J. Yu, P. Aspesi Jr., M. de Silva, K. Jagtap, M.D. Jones, L. Wang, C. Hatton, E. Palescandolo, S. Gupta, S. Mahan, C. Sougnez, R.C. Onofrio, T. Liefeld, L. MacConaill, W. Winckler, M. Reich, N. Li, J.P. Mesirov, S.B. Gabriel, G. Getz, K. Ardlie, V. Chan, V.E. Myer, B.L. Weber, J. Porter, M. Warmuth, P. Finan, J.L. Harris, M. Meyerson, T.R. Golub, M.P. Morrissey, W.R. Sellers, R. Schlegel, L.A. Garraway, The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S.J. Baumgart, E. Nevedomskaya, R. Lesche, R. Newman, D. Mumberg, B. Haendler, Darolutamide antagonizes androgen signaling by blocking enhancer and super-enhancer activation. Mol. Oncol. 14, 2022–2039 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. H. Wang, E. Wei, A.D. Quiroga, X. Sun, N. Touret, R. Lehner, Altered lipid droplet dynamics in hepatocytes lacking triacylglycerol hydrolase expression. Mol. Biol. Cell 21, 1991–2000 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. Vara-Ciruelos, F.M. Russell, D.G. Hardie, The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? Open Biol. 9, 190099 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Y. Kong, L. Cheng, F. Mao, Z. Zhang, Y. Zhang, E. Farah, J. Bosler, Y. Bai, N. Ahmad, S. Kuang, L. Li, X. Liu, Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC). J. Biol. Chem. 293, 14328–14341 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. C. Liu, W. Lou, Y. Zhu, J.C. Yang, N. Nadiminty, N.W. Gaikwad, C.P. Evans, A.C. Gao, Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res. 75, 1413–1422 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J.S. Moon, W.J. Jin, J.H. Kwak, H.J. Kim, M.J. Yun, J.W. Kim, S.W. Park, K.S. Kim, Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem. J. 433, 225–233 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. J.A. Locke, E.S. Guns, M.L. Lehman, S. Ettinger, A. Zoubeidi, A. Lubik, K. Margiotti, L. Fazli, H. Adomat, K.M. Wasan, M.E. Gleave, C.C. Nelson, Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance. Prostate 70, 239–251 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. S. Balaban, R.F. Shearer, L.S. Lee, M. van Geldermalsen, M. Schreuder, H.C. Shtein, R. Cairns, K.C. Thomas, D.J. Fazakerley, T. Grewal, J. Holst, D.N. Saunders, A.J. Hoy, Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5, 1 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  46. T.W. Flaig, M. Salzmann-Sullivan, L.J. Su, Z. Zhang, M. Joshi, M.A. Gijon, J. Kim, J.J. Arcaroli, A. Van Bokhoven, M.S. Lucia, F.G. La Rosa, I.R. Schlaepfer, Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget 8, 56051–56065 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Joshi, G.E. Stoykova, M. Salzmann-Sullivan, M. Dzieciatkowska, L.N. Liebman, G. Deep, I.R. Schlaepfer, CPT1A supports castration-resistant prostate cancer in androgen-deprived conditions. Cells 8, 1115 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  48. H.P. Lin, C.Y. Lin, C. Huo, Y.J. Jan, J.C. Tseng, S.S. Jiang, Y.Y. Kuo, S.C. Chen, C.T. Wang, T.M. Chan, J.Y. Liou, J. Wang, W.S. Chang, C.H. Chang, H.J. Kung, C.P. Chuu, AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf, and TSC1/TSC2. Oncotarget 6, 27097–27112 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  49. J. Sha, W. Xue, B. Dong, J. Pan, X. Wu, D. Li, D. Liu, Y. Huang, PRKAR2B plays an oncogenic role in the castration-resistant prostate cancer. Oncotarget 8, 6114–6129 (2017)

    Article  PubMed  Google Scholar 

  50. P. Gonzalez-Menendez, D. Hevia, J.C. Mayo, R.M. Sainz, The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int. J. Cancer 142, 2414–2424 (2018)

    Article  CAS  PubMed  Google Scholar 

  51. Y. Liu, L.S. Zuckier, N.V. Ghesani, Dominant uptake of fatty acid over glucose by prostate cells: A potential new diagnostic and therapeutic approach. Anticancer Res. 30, 369–374 (2010)

    PubMed  Google Scholar 

  52. M. Kaarbo, T.I. Klokk, F. Saatcioglu, Androgen signaling and its interactions with other signaling pathways in prostate cancer. Bioessays 29, 1227–1238 (2007)

    Article  PubMed  Google Scholar 

  53. V. Cucchiara, J.C. Yang, V. Mirone, A.C. Gao, M.G. Rosenfeld, C.P. Evans, Epigenomic regulation of androgen receptor signaling: Potential role in prostate cancer therapy. Cancers (Basel) 9(9) (2017)

  54. E. Eidelman, J. Twum-Ampofo, J. Ansari, M.M. Siddiqui, The metabolic phenotype of prostate cancer. Front. Oncol. 7, 131 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  55. L. Galbraith, H.Y. Leung, I. Ahmad, Lipid pathway deregulation in advanced prostate cancer. Pharmacol. Res. 131, 177–184 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. K.D. Tousignant, A. Rockstroh, A. Taherian Fard, M.L. Lehman, C. Wang, S.J. McPherson, L.K. Philp, N. Bartonicek, M.E. Dinger, C.C. Nelson, M.C. Sadowski, Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res. 17, 1166–1179 (2019)

    Article  CAS  PubMed  Google Scholar 

  57. X. Wu, G. Daniels, P. Lee, M.E. Monaco, Lipid metabolism in prostate cancer. Am. J. Clin. Exp. Urol. 2, 111–120 (2014)

  58. F. Giunchi, M. Fiorentino, M. Loda, The metabolic landscape of prostate cancer. Eur. Urol. Oncol. 2, 28–36 (2019)

  59. G.E. Stoykova, I.R. Schlaepfer, Lipid metabolism and endocrine resistance in prostate cancer, and new opportunities for therapy. Int. J. Mol. Sci. 20, 2626 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  60. C.Y. Mah, Z.D. Nassar, J.V. Swinnen, L.M. Butler, Lipogenic effects of androgen signaling in normal and malignant prostate. Asian J. Urol. 7, 258–270 (2020)

  61. G. Yu, Y.C. Lee, C.J. Cheng, C.F. Wu, J.H. Song, G.E. Gallick, L.Y. Yu-Lee, J. Kuang, S.H. Lin, RSK promotes prostate cancer progression in bone through ING3, CKAP2, and PTK6-mediated cell survival. Mol. Cancer Res. 13, 348–357 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. D.E. Clark, T.M. Errington, J.A. Smith, H.F. Frierson Jr., M.J. Weber, D.A. Lannigan, The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res. 65, 3108–3116 (2005)

    Article  CAS  PubMed  Google Scholar 

  63. M. Shiota, M. Itsumi, A. Yokomizo, A. Takeuchi, K. Imada, E. Kashiwagi, J. Inokuchi, K. Tatsugami, T. Uchiumi, S. Naito, Targeting ribosomal S6 kinases/Y-box binding protein-1 signaling improves cellular sensitivity to taxane in prostate cancer. Prostate 74, 829–838 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. M. Roffe, F.C. Lupinacci, L.C. Soares, G.N. Hajj, V.R. Martins, Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell. Signal. 27, 1630–1642 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the project team for continuous support. The help of Maria Quanz, Daniel Seifert, Fanny Knoth, Hagen Muckwar, Enrico Spelling, Carolin Pohle, Guido Piechowiak, Sebastian Schulze, Janine Fischer, Vivien Raschke, Pia Stollberg and Daniel Wolleh is gratefully acknowledged. We are indebted to Martin Eilers (University of Würzburg, Germany) for scientific advice. Support with chemical syntheses by Pharmaron is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Clara Lemos, Volker Schulze and Bernard Haendler contributed to the study conception and design. Medicinal chemistry and computational chemistry: Volker Schulze, Tobias Heinrich, Julien Lefranc, Hans Briem, Lara Kuhnke and Clara Christ were in charge of the medicinal chemistry and computational chemistry part. Clara Lemos, Simon Baumgart, Benjamin Bader, Simon Holton, Ulf Bömer, Philip Lienau and Bernard Haendler were involved in the acquisition of pharmacology data. Clara Lemos, Volker Schulze, Simon Baumgart, Ekaterina Nevedomskaya, Benjamin Bader, Clara Christ, Ulf Bömer and Bernard Haendler were involved in the analysis and interpretation of data (i.e., statistical analysis, biostatistics, computational analysis). Franz von Nussbaum, Carl Nising, Marcus Bauser, Andrea Hägebarth and Dominik Mumberg supervised the study. The first draft of the manuscript was written by Bernard Haendler and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bernard Haendler.

Ethics declarations

Conflict of interest

All authors are/were employees and/or shareholders of Bayer AG.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PPTX 6797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, C., Schulze, V.K., Baumgart, S.J. et al. The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models. Cell Oncol. 44, 581–594 (2021). https://doi.org/10.1007/s13402-020-00584-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00584-8

Keywords

Navigation