Skip to main content
Log in

Structural Modifications and Clustering of Low-Density Lipoproteins in Solution Induced by Heating

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This work presents a systematic study of low-density lipoprotein (LDL) in solutions subjected to subtle temperature changes, monitored by small angle X-ray scattering. From the data analysis, information about the equilibrium aggregation of the particles, as well as changes on the internal structure of the lipoproteins, were observed. The electron density profiles of the LDL particles were retrieved with a recently developed deconvolution method. Our results indicate that LDL particles keep their structure in the temperature range from about 22 °C up to 60 °C. Moreover, the formation of aggregates and their evolution as a function of time were monitored. Interestingly, when the temperature is raised to 80 °C, the results indicate the rupture of the particle and unspecific aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.L.P. Oliveira, P. Santos, A. Monteiro, A.M. Figueiredo Neto, Effect of oxidation on the structure of human low and high density human lipoproteins. Biophys. J. 106, 2595–2605 (2014)

    Article  ADS  Google Scholar 

  2. R. Prassl, M. Pregetter, H. Amenitsch, M. Kriechbaum, R. Schwarzenbacher, J.M. Chapman, P. Laggner, Low density lipoproteins as circulating fast temperature sensors. Plos One 3, e4079 (2008)

    Article  ADS  Google Scholar 

  3. N.F. Galeano, M. Al-Haideri, F. Keyserman, S.C. Rumsey, R.J. Deckelbaum, Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity. J. Lipid Res. 39, 1263–1273 (1998)

    Google Scholar 

  4. P. Laggner, G. Degovics, K.W. Muller, O. Glatter, O. Kratky, G. Kostner, A. Holasek, Molecular packing and fluidity of lipids in human-serum low-density lipoproteins. Hoppe-Seylers Z Physiol Chem 358, 771–778 (1977)

    Article  Google Scholar 

  5. D. Atkinson, R.J. Deckelbaum, D.M. Small, G.G. Shipley, Structure of human-plasma low-density lipoproteins—molecular-organization of central core. Proc. Natl. Acad. Sci. USA 74, 1042–1046 (1977)

    Article  ADS  Google Scholar 

  6. R.J. Deckelbaum, G.G. Shipley, D.M. Small, Structure and interactions of lipids in human-plasma low-density lipoproteins. J. Biol. Chem. 252, 744–754 (1977)

    Google Scholar 

  7. S. Jayaraman, D. Gantz, O. Gursky, Structural basis for thermal stability of human low-density lipoprotein†. Biochemistry 44, 3965–3971 (2005)

    Article  Google Scholar 

  8. M. Lu, D.L. Gantz, H. Herscovitz, O. Gursky, Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis. J. Lipid Res. 53, 2175–2185 (2012)

    Article  Google Scholar 

  9. R.J. Havel, H.A. Eder, J.H. Bragdon, Distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345–1353 (1955)

    Article  Google Scholar 

  10. G. Kellermann, F. Vicentin, E. Tamura, M. Rocha, H. Tolentino, A. Barbosa, A. Craievich, I. Torriani, The small-angle X-ray scattering beamline of the brazilian Synchrotron Light Laboratory. J. Appl. Crystallogr. 30, 880–883 (1997)

    Article  Google Scholar 

  11. L.P. Cavalcanti, I.L. Torriani, T.S. Plivelic, C.L.P. Oliveira, G. Kellermann, R. Neuenschwander, Two new sealed sample cells for small angle X-ray scattering from macromolecules in solution and complex fluids using synchrotron radiation. Rev. Sci. Instrum. 75, 4541–4546 (2004)

    Article  ADS  Google Scholar 

  12. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 14, 235–248 (1996)

    Article  ADS  Google Scholar 

  13. O. Glatter, A new method for the evaluation of small-angle scattering data. J. Appl. Crystallogr. 10, 415–421 (1977)

    Article  Google Scholar 

  14. C.L.P. Oliveira, M.A. Behrens, J.S. Pedersen et al., A SAXS study of glucagon fibrillation. J. Mol. Biol. 387, 147–161 (2009)

    Article  Google Scholar 

  15. J.S. Pedersen, S. Hansen, R. Bauer, The aggregation behavior of zinc-free insulin studied by small-angle neutron-scattering. Eur. Biophys J. Biophys. Lett. 22, 379–389 (1994)

    Article  Google Scholar 

  16. D.I. Svergun, Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999)

    Article  ADS  Google Scholar 

  17. P. Debye, Molecular-weight determination by light scattering. J. Phys. Colloid Chem. 51, 18–32 (1947)

    Article  Google Scholar 

  18. C.L.P. Oliveira, B.B. Gerbelli, E.R.T. Silva, F. Nallet, L. Navailles, E.A. Oliveira, J.S. Pedersen, Gaussian deconvolution: a useful method for a form-free modeling of scattering data from mono- and multilayered planar systems. J. Appl. Crystallogr. 45, 1278–1286 (2012)

    Article  Google Scholar 

  19. P. Laggner, K.W. Muller, Structure of serum-lipoproteins as analyzed by X-ray small-angle scattering. Q. Rev. Biophys. 11 (1978)

  20. G. Ren, G. Rudenko, S.J. Ludtke, J. Deisenhofer, W. Chiu, H.J. Pownall, Model of human low-density lipoprotein and bound receptor based on CryoEM. Proc. Natl. Acad. Sci. USA 107, 1059–1064 (2010)

    Article  ADS  Google Scholar 

  21. Y. Liu, D. Luo, D. Atkinson, Human LDL core cholesterol ester packing: three-dimensional image reconstruction and SAXS simulation studies. J. Lipid Res. 52, 256–262 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by The National Council for Scientific and Technological Development (CNPq), São Paulo Research Foundation (FAPESP), and National Institute of Science and Technology of Complex Fluids (INCT-FCx). The authors acknowledge the Brazilian Synchrotron Light Laboratory for the SAXS data acquisition (proj. # SAXS1-10713). The authors thank Dr. Priscila R. Santos for the support on sample preparation and data acquisition.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano L. P. Oliveira.

Appendix 1

Appendix 1

a) Derivation of Eqs. 8 and 9

The scattering intensity for a system composed of two populations is given by:

$$ I{(0)}_{tot}={c}_{LDL}{\left(\varDelta \rho \right)}^2{V}_{LDL}^2+{c}_{agg}{\left(\varDelta \rho \right)}^2{V}_{agg}^2 $$
(a1)
$$ I{(0)}_{tot}={c}_{LDL}{\left(\varDelta \rho \right)}^2{V}_{LDL}^2\left(1+{S}_C^{agg}\right) $$
(a2)

where,

$$ {S}_C^{agg}=\frac{c_{agg}{V}_{agg}^2}{c_{LDL}{V}_{LDL}^2} $$
(a3)

The fraction of the particles in each population is the ratio between the number of particles in one population divided by the total number of particles weighted in a given way. For the number fraction, it is not necessary to use weighting, for the volume fraction one has to weight by the volume and for the intensity fraction the weighting function is the volume square. It is possible to write a single formula for the fractions if one uses as weighting function the volume to the power 2-α :

$$ \begin{array}{c}\hfill {f}_{LDL}^i=\frac{c_{LDL}{\left(\varDelta \rho \right)}^2{V}_{LDL}^{2-\alpha }}{c_{LDL}{\left(\varDelta \rho \right)}^2{V}_{LDL}^{2-\alpha }+{c}_{agg}{\left(\varDelta \rho \right)}^2{V}_{LDL}^{2-\alpha }}\hfill \\ {}\hfill {f}_{LDL}^i=\frac{c_{LDL}{V}_{LDL}^{2-\alpha }}{c_{LDL}{V}_{LDL}^{2-\alpha }+{c}_{agg}{V}_{LDL}^{2-\alpha }}=\frac{c_{LDL}{V}_{LDL}^{2-\alpha }/{c}_{LDL}{V}_{LDL}^{2-\alpha }}{\left({c}_{LDL}{V}_{LDL}^{2-\alpha }+{c}_{agg}{V}_{LDL}^{2-\alpha}\right)/{c}_{LDL}{V}_{LDL}^{2-\alpha }}=\frac{1}{1+\frac{c_{agg}{V}_{agg}^{2-\alpha }}{c_{LDL}{V}_{LDL}^{2-\alpha }}}\hfill \\ {}\hfill {f}_{LDL}^i=\frac{1}{1+{S}_C^{agg}\frac{V_{LDL}^2}{V_{agg}^2}\frac{V_{agg}^{2-\alpha }}{V_{LDL}^{2-\alpha }}}=\frac{1}{1+{S}_C^{agg}{\left(\frac{V_{agg}}{V_{LDL}}\right)}^{-\alpha }}\Rightarrow {f}_{LDL}^i=\frac{1}{1+{S}_C^{agg}{\left(\frac{V_{LDL}}{V_{agg}}\right)}^{\alpha }}\hfill \end{array} $$
(a4)

For the fraction of aggregates weighted by the volume to the power 2-α, simple algebraic operations lead to,

$$ {f}_{agg}^i=\frac{1}{1+\frac{1}{S_C^{agg}}{\left(\frac{V_{agg}}{V_{LDL}}\right)}^{\alpha }} $$
(a5)

By inspection, one can show that f i LDL  + f i agg  = 1.

If one assumes that the LDL particles and aggregates have a globular shape, the volume scales with the cube of the particle radius of gyration, so

$$ {f}_{LDL}^i=\frac{1}{1+{S}_C^{agg}{\left(\frac{{\left({R}_G^{LDL}\right)}^3}{{\left({R}_G^{agg}\right)}^3}\right)}^{\alpha }}=\frac{1}{1+{S}_C^{agg}{\left(\frac{R_G^{LDL}}{R_G^{agg}}\right)}^{3\alpha }} $$
(a6)
$$ {f}_{agg}^i=\frac{1}{1+\frac{1}{S_C^{agg}}{\left(\frac{R_G^{agg}}{R_G^{LDL}}\right)}^{3\alpha }} $$
(a7)

For the numerical fraction, i = “num” and α = 2; for volume fraction, i = “vol” and α = 1; and for the intensity fraction, i = “int” and α = 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C.L.P., Monteiro, A.M. & Neto, A.M.F. Structural Modifications and Clustering of Low-Density Lipoproteins in Solution Induced by Heating. Braz J Phys 44, 753–764 (2014). https://doi.org/10.1007/s13538-014-0273-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0273-z

Keywords

Navigation