Skip to main content
Log in

Electrical Resistivity in Non-stoichiometric MoO2

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

MoO y with 1.85 ≤ y ≤ 2.20 has been studied by X-ray diffractometry and photoemission spectroscopy at room temperature and by electrical resistance as a function of temperature from 2 to 300 K. Although X-ray diffractograms are very similar to the stoichiometric MoO2 with monoclinic structure of the space group P21/c (14), the electrical properties are strongly dependent on the oxygen composition. Samples with y = 1.85 and 1.90 show anomalous behavior in electrical conductivity. Photoemission and X-ray absorption spectroscopy measurements suggest that this anomalous behavior is related to the presence of Mo3+ ions such as in KxMoO2  compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Kihlborg, Acta Chem. Scand. 13, 954 (1959)

    Article  Google Scholar 

  2. H. Gruber, H. Haselmair, H.P. Fritzer, J. Solid State Chem. 47, 84 (1983)

    Article  ADS  Google Scholar 

  3. M. Greenblatt, Chem. Rev. 88, 31 (1988)

    Article  Google Scholar 

  4. L. Bendor, Y. Shimony, Mater. Res. Bull. 9, 837 (1974)

    Article  Google Scholar 

  5. P. Thakur, J.C. Cezar, N.B. Brookes, R.J. Choudhary, R. Prakash, D.M. Phase, K.H. Chae, R. Kumar, Appl. Phys. Lett. 94, 062501 (2009)

    Article  ADS  Google Scholar 

  6. J. Nisar, X. Peng, R. Ahuja, Phys. Rev. B 81, 012402 (2010)

    Article  ADS  Google Scholar 

  7. F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai, S. Han, Phys. Rev. B 81, 134407 (2010)

    Article  ADS  Google Scholar 

  8. B.G. Brandt, A.C. Skapski, Acta Chem. Scand. 21, 661 (1967)

    Article  Google Scholar 

  9. V. Eyert, R. Horny, K.H. Hock, S. Horn, J. Phys. Condens. Matter 12, 4923 (2000)

    Article  ADS  Google Scholar 

  10. D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, J. Phys. Chem. C 114, 4636 (2010)

    Article  Google Scholar 

  11. G. Andersson, A. Magneli, Acta Chem. Scand. 4, 793 (1950)

    Article  Google Scholar 

  12. M. Sato, H. Fujishita, S. Sato, S. Hoshino, J. Phys. C: Solid State Phys 19, 3059 (1986)

    Article  ADS  Google Scholar 

  13. M. Sato, M. Onoda, Y. Matsuda, J. Phys. C: Solid State Phys 20, 4763 (1987)

    Article  ADS  Google Scholar 

  14. H. Guyot, C. Escribefilippini, G. Fourcaudot, K. Konate, C. Schlenker, J. Phys. C: Solid State Phys 16, 1227 (1983)

    Article  ADS  Google Scholar 

  15. M.S. da Luz, J.J. Neumeier, C.A.M. dos Santos, B.D. White, H.J. Izario Filho, J.B. Leao, Q. Huang, Phys. Rev. B 84, 014108 (2011)

    Article  ADS  Google Scholar 

  16. M.P. Nikiforov, A.F. Isakovic, D.A. Bonnell, Phys. Rev. B 76, 033104 (2007)

    Article  ADS  Google Scholar 

  17. H.M. Tsai, K. Asokan, C.W. Pao, J.W. Chiou, C.H. Du, W.F. Pong, M.H. Tsai, L.Y. Jang, Appl. Phys. Lett. 91, 022109 (2007)

    Article  ADS  Google Scholar 

  18. C.A.M. dos Santos, M.S. da Luz, Y.-K. Yu, J.J. Neumeier, J. Moreno, B.D. White, Phys. Rev. B 77, 193106 (2008)

    Article  ADS  Google Scholar 

  19. L.M.S. Alves, V.I. Damasceno, C.A.M. dos Santos, A.D. Bortolozo, P.A. Suzuki, H.J. Izario Filho, A.J.S. Machado, Z. Fisk, Phys. Rev. B 81, 174532 (2010)

    Article  ADS  Google Scholar 

  20. L.M.S. Alves, C.A.M. dos Santos, A.J.S. Machado, B.S. de Lima, J.J. Neumeier, M.D.R. Marques, J.A. Aguiar, R.J.O. Mossanek, M. Abbate, J. Appl. Phys. 112, 073923 (2012)

    Article  ADS  Google Scholar 

  21. C. Schlenker, H. Schwenk, C. Escribefilippini, J. Marcus, Physica B C 135, 511 (1985)

  22. D. Parker, J.C. Idrobo, C. Cantoni, A.S. Sefat, Phys. Rev. B 90, 054505 (2014)

    Article  ADS  Google Scholar 

  23. H.-K. Fun, P. Yang, M. Sasaki, M. Inoue, H. Kadomatsu, Acta Crystallogr C 55, 841–843 (1999)

    Article  Google Scholar 

  24. A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (1994)

  25. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)

    Article  Google Scholar 

  26. A.A. Bolzan, B.J. Kennedy, C.J. Howard, Aust. J. Chem. 48, 1473 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the CNPq (508308/2010-0, 309084/2010-5, 448041/2014-6, 300821/2012-3, and 490182/2009-7) and FAPESP (2009/14524-6, 2009/54001-2, and 2010/06637-2); M.S. da Luz also thanks CAPES and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. S. Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, L.M.S., Benaion, S.S., Romanelli, C.M. et al. Electrical Resistivity in Non-stoichiometric MoO2 . Braz J Phys 45, 234–237 (2015). https://doi.org/10.1007/s13538-015-0307-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0307-1

Keywords

Navigation