Skip to main content
Log in

Effect of Process Temperature and Reaction Cycle Number on Atomic Layer Deposition of TiO2 Thin Films Using TiCl4 and H2O Precursors: Correlation Between Material Properties and Process Environment

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of process temperature and reaction cycle number on atomic layer-deposited TiO2 thin films onto Si(100) using TiCl4 and H2O precursors was investigated in order to discuss the correlation between the growth per cycle (GPC), film structure (crystallinity), and surface roughness as well as the dependence of some of these properties with gas phase environment such as HCl by-product. In this work, these correlations were studied for two conditions: (i) process temperatures in the range of 100–500 °C during 1000 reaction cycles and (ii) number of cycles in the range of 100–2000 for a fixed temperature of 250 °C. To investigate the material properties, Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffraction (GIXRD), and atomic force microscopy (AFM) techniques were used. Mass spectrometry technique was used to investigate the time evolution of gas phase species HCl and H2O during ALD process. Results indicate that the GPC does not correlate well with film crystallinity and surface roughness for the evaluated process parameters. Basically, the film crystallinity relies solely on grain growth kinetics of the material. This occurs due to higher HCl by-product content during each purge step. Furthermore, for films deposited at variable cycle number, the evolution of film thickness and elemental composition is altered from an initial amorphous structure to a near stoichiometric TiO2-x and, subsequently, becomes fully stoichiometric TiO2 at 400 cycles or above. At this cycle value, the GIXRD spectrum indicates the formation of (101) anatase orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Agnarsson, F. Magnus, T.K. Tryggvason, A.S. Ingason, K. Leosson, S. Olafsson, J.T. Gudmundsson, Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering. Thin Solid Films 545, 445–450 (2013)

    Article  ADS  Google Scholar 

  2. M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011)

    Article  ADS  Google Scholar 

  3. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  ADS  Google Scholar 

  4. J. Ângelo, L. Andrade, L.M. Madeira, A. Mendes, An overview of photocatalysis phenomena applied to NOx abatement. J. Environ. Manage. 129, 522–539 (2013)

    Article  Google Scholar 

  5. Z.F. Yin, L. Wu, H.G. Yang, Y.H. Su, Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys. 15, 4844–4858 (2013)

    Article  Google Scholar 

  6. V.-S. Dang, H. Parala, J.H. Kim, K. Xu, N.B. Srinivasan, E. Edengeiser, M. Havenith, A.D. Wieck, T. de los Arcos, R.A. Fischer, A. Devi, Electrical and optical properties of TiO2 thin films prepared by plasma-enhanced atomic layer deposition. Phys. Status Solid A 211(2), 416–424 (2014)

    Article  Google Scholar 

  7. M.D. Wiggins, M.C. Nelson, C.R. Aita, Phase development in sputter deposited titanium dioxide. J. Vac. Sci. Technol. A 14(3), 772–776 (1996)

    Article  ADS  Google Scholar 

  8. J. Lee, S.J. Lee, W.B. Han, H. Jeon, J. Park, W. Jang, C.S. Yoon, H. Jeon, Deposition temperature dependence of titanium oxide thin films grown by remote-plasma atomic layer deposition. Phys. Status Solid A 210(2), 276–284 (2013)

    Article  ADS  Google Scholar 

  9. V. Pore, Atomic Layer Deposition and Photocatalytic Properties of Titanium Dioxide Thin Films, Master Dissertation, University of Helsinki, Finland (2010), p. 89

  10. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761–1769 (2013)

    Article  Google Scholar 

  11. E. Serrano, G. Rus, J. Garcıa-Martınez, Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 13, 2373–2384 (2009)

    Article  Google Scholar 

  12. R.S. Pessoa, M.A. Fraga, L.V. Santos, M. Massi, H.S. Maciel, Nanostructured thin films based on TiO2 and/or SiC for use in photoelectrochemical cells: a review of the material characteristics, synthesis and recent applications. Mater. Sci. Semicond Process 29, 56–68 (2015)

    Article  Google Scholar 

  13. P. Kajitvichyanukul, J. Ananpattarachai, S. Pongpom, Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process. Sci. Technol. Adv. Mater. 6, 352–358 (2005)

    Article  Google Scholar 

  14. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)

    Article  Google Scholar 

  15. D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R 74(12), 377–406 (2013)

    Article  Google Scholar 

  16. S. Venkatachalam, H. Hayashi, T. Ebina and H. Nanjo, Preparation and Characterization of Nanostructured TiO 2 Thin Films by Hydrothermal and Anodization Methods, Optoelectronics, Advanced Materials and Devices, Prof. Sergei Pyshkin (Ed.), ISBN: 978-953-51-0922-8, InTech (2013)

  17. H. Toku, R.S. Pessoa, H.S. Maciel, M. Massi, U.A. Mengui, The effect of oxygen concentration on the low temperature deposition of TiO2 thin films. Surf. Coat. Technol. 202, 2126–2131 (2008)

    Article  Google Scholar 

  18. T. Sakae, L. Miao, W. Wunderlich, M. Tanemura, Y. Mori, S. Toh, K. Kaneko, Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: a review. Sci. Technol. Adv. Mater. 6, 11–17 (2005)

    Article  Google Scholar 

  19. S.S. Huang, J.S. Chen, Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma-enhanced chemical vapor deposition. J Mater Sci Mater Electron 13, 77–81 (2002)

    Article  Google Scholar 

  20. F. Maury, J. Mungkalasiri, Chemical vapor deposition of TiO2 for photocatalytic applications and biocidal surfaces. Key Eng. Mater. 415, 1–4 (2009)

    Article  Google Scholar 

  21. A.K. Chandiran, P. Comte, R. Humphry-Baker, F. Kessler, C. Yi, M.K. Nazeeruddin, M. Grätzel, Evaluating the critical thickness of TiO2 layer on insulating mesoporous templates for efficient current collection in Dye-sensitized solar cells. Adv. Funct. Mater. 23, 2775–2781 (2013)

    Article  Google Scholar 

  22. J.A. van Delft, D. Garcia-Alonso, W.M.M. Kessels, Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing. Semicond. Sci. Technol. 27, 074002 (2012)

    Article  ADS  Google Scholar 

  23. R.L. Puurunen, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005)

    Article  ADS  Google Scholar 

  24. V. Miikkulainen, M. Leskelä, M. Ritala, R.L. Puurunen, Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J. Appl. Phys. 113, 021301 (2013)

    Article  ADS  Google Scholar 

  25. J. Leem, I. Park, Y. Li, W. Zhou, Z. Jin, S. Shin, Y.-S. Min, Role of HCl in atomic layer deposition of TiO2 thin films from titanium tetrachloride and water. Bull. Korean Chem. Soc. 35(4), 1195–1201 (2014)

    Article  Google Scholar 

  26. R.P. Chaukulkar, S. Agarwal, Atomic layer deposition of titanium dioxide using titanium tetrachloride and titanium tetraisopropoxide as precursors. J. Vac. Sci. Technol. A 31(3), 031509 (2013)

    Article  Google Scholar 

  27. T. Blanquart, Atomic layer deposition of groups 4 and 5 transition metal oxide thin films: focus on heteroleptic precursors, Master Dissertation, University of Helsinki, Finland (2013), p. 68

  28. J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, M. Leskela, Characterization of titanium dioxide atomic layer growth from titanium ethoxide and water. Thin Solid Films 370, 163–172 (2000)

    Article  ADS  Google Scholar 

  29. M. Ritala, M. Leskelä, E. Nykänen, P. Soininen, L. Niinistö, Growth of titanium dioxide thin films by atomic layer epitaxy. Thin Solid Films 225, 288–295 (1993)

    Article  ADS  Google Scholar 

  30. M. Ritala, M. Leskelä, L.-S. Johansson, L. Niinistö, Atomic force microscopy study of titanium dioxide thin films grown by atomic layer epitaxy. Thin Solid Films 228, 32–35 (1993)

    Article  ADS  Google Scholar 

  31. J. Aarik, A. Aidla, T. Uustare, V. Sammelselg, Morphology and structure of TiO2 thin films grown by atomic layer deposition. J. Cryst. Growth 148, 268–275 (1995)

    Article  ADS  Google Scholar 

  32. J. Aarik, A. Aidla, V. Sammelselg, H. Siimon, T. Uustare, Control of thin film structure by reactant pressure in atomic layer deposition of TiO2. J. Crystal Growth 169, 496–502 (1996)

    Article  ADS  Google Scholar 

  33. J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, V. Sammelselg, Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition. Thin Solid Films 305, 270–273 (1997)

    Article  ADS  Google Scholar 

  34. V. Sammelselg, A. Rosental, A. Tarre, L. Niinisto, K. Heiskanen, K. Ilmonen, L.-S. Johansson, T. Uustare, TiO2 thin films by atomic layer deposition: a case of uneven growth at low temperature. Appl. Surf. Sci. 134, 78–86 (1998)

    Article  ADS  Google Scholar 

  35. J. Aarik, A. Aidla, H. Mändar, V. Sammelselg, Anomalous effect of temperature on atomic layer deposition of titanium dioxide. J. Crystal Growth 220, 531–537 (2000)

    Article  ADS  Google Scholar 

  36. J. Aarik, A. Aidla, H. Mändar, T. Uustare, Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism. Appl. Surf. Sci. 172, 148–158 (2001)

    Article  ADS  Google Scholar 

  37. J. Aarik, A. Aidla, H. Mandar, T. Uustare, M. Schuisky, A. Harsta, Atomic layer growth of epitaxial TiO2 thin films from TiCl4 and H2O on α-Al2O3 substrates. J. Crystal Growth 242, 189–198 (2002)

    Article  ADS  Google Scholar 

  38. D.R.G. Mitchell, D.J. Attard, G. Triani, Transmission electron microscopy studies of atomic layer deposition TiO2 films grown on silicon. Thin Solid Films 441, 85–95 (2003)

    Article  ADS  Google Scholar 

  39. K.S. Finnie, G. Triani, K.T. Short, D.R.G. Mitchell, D.J. Attard, J.R. Bartlett, C.J. Barbé, Influence of Si(100) surface pretreatment on the morphology of TiO2 films grown by atomic layer deposition. Thin Solid Films 440, 109–116 (2003)

    Article  ADS  Google Scholar 

  40. A. Niilisk, M. Moppel, M. Pärs, I. Sildos, T. Jantson, T. Avarmaa, R. Jaaniso, J. Aarik, Structural study of TiO2 thin films by micro-Raman spectroscopy. Cent. Eur. J. Phys. 4(1), 105–116 (2006)

    Google Scholar 

  41. H.-E. Cheng, C.-C. Chen, Morphological and photoelectrochemical properties of ALD TiO2 films. J. Electrochem. Soc. 155(9), D604–D607 (2008)

    Article  Google Scholar 

  42. R.L. Puurunen, T. Sajavaara, E. Santala, V. Miikkulainen, T. Saukkonen, M. Laitinen, M. Leskelä, Controlling the crystallinity and roughness of atomic layer deposited titanium dioxide thin films. J. Nanosci. Nanotechnol. 11, 8101–8107 (2011)

    Article  Google Scholar 

  43. L. Aarik, T. Arroval, R. Rammula, H. Mändar, V. Sammelselg, J. Aarik, Atomic layer deposition of TiO2 from TiCl4 and O3. Thin Solid Films 542, 100–107 (2013)

    Article  ADS  Google Scholar 

  44. M. Mayer, AIP Conf. Proc. 475 (1999) 541; SIMNRA (Simulation Program for the Analysis of NRA, RBS and ERDA) developed by M. Mayer; http://home.rzg.mpg.de/∼mam/.

  45. D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10(1), 181–188 (2012)

    Google Scholar 

  46. R.L. Puurunen, Growth per cycle in atomic layer deposition: a theoretical model. Chem. Vap. Depos. 9(5), 249–257 (2003)

    Article  Google Scholar 

  47. R.L. Puurunen, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005)

    Article  ADS  Google Scholar 

  48. K.-E. Elers, T. Blomberg, M. Peussa, B. Aitchison, S. Haukka, S. Marcus, Film uniformity in atomic layer deposition. Chem. Vap. Depos. 12, 13–24 (2006)

    Article  Google Scholar 

  49. M.E. Mrose, B. Post, S. Weissmann, H.F. McMurdie, M.C. Morris, W.F. McClune (eds.), Powder Diffraction Data, Joint Committee on Powder Diffraction Data Standards, Swarthmore, PA, cards 16-617, 21-1272 and 21-1276 (1976).

  50. J. Shi, Z. Li, A. Kvit, S. Krylyuk, A.V. Davydov, X. Wang, Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition. Nano Lett. 13, 5727–5734 (2013)

    Article  ADS  Google Scholar 

  51. M. Ritala, M. Leskela, L. Niinistö, T. Prohaska, G. Friedbacher, M. Grasserbauer, Development of crystallinity and morphology in hafnium dioxide thin films grown by atomic layer epitaxy. Thin Solid Films 250, 72–80 (1994)

    Article  ADS  Google Scholar 

  52. V. Sammelselg, J. Aarik, A. Aidla, A. Kasikov, E. Heikinheimo, M. Peussa, L. Niinisto, Composition and thickness determination of thin oxide films: comparison of different programs and methods. J. Anal. At. Spectrom. 14, 523–527 (1999)

    Article  Google Scholar 

  53. A. Sinha, D.W. Hess, C.L. Henderson, Area selective atomic layer deposition of titanium dioxide: effect of precursor chemistry. J. Vac. Sci. Technol. B 24, 2523–2532 (2006)

    Article  Google Scholar 

  54. G. Triani, J.A. Campbell, P.J. Evans, J. Davis, B.A. Latella, R.P. Burford, Low temperature atomic layer deposition of titania thin films. Thin Solid Films 518, 3182–3189 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for Tiago Fiorini da Silva from Physics Department - USP for RBS measurements and Carlos Kazuo Inoki from Brazilian Nanotechnology National Laboratory - LNNano/LNLS for TEM measurements. The financial support of Brazilian agency program FAPESP/MCT/CNPq-PRONEX (grant no. 11/50773-0), FAPESP (grant no. 15/05956-0), CNPq (grant no. 305496/2012-3 and 446545/2014-7), and Brazilian Space Agency (AEB/Uniespaço) are also strongly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Sávio Pessoa.

Additional information

Authorship Statement

The submission of the manuscript has been approved by all coauthors. This manuscript has not been published nor is it currently being considered for publication in any other journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiappim, W., Testoni, G.E., de Lima, J.S.B. et al. Effect of Process Temperature and Reaction Cycle Number on Atomic Layer Deposition of TiO2 Thin Films Using TiCl4 and H2O Precursors: Correlation Between Material Properties and Process Environment. Braz J Phys 46, 56–69 (2016). https://doi.org/10.1007/s13538-015-0383-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-015-0383-2

Keywords

Navigation