Skip to main content
Log in

Synthesis of Magnetite Nanoparticles of Different Size and Shape by Interplay of Two Different Surfactants

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Given the central role that nanoparticle size and shape play in many fundamental applications for designing functional materials, fine control of the synthesis has been intensively pursued. A simple one-step method for obtaining monodisperse nanoparticles over a large size range with shape control has not yet been reported. Here, we propose a simple method to control the morphology of magnetite nanoparticles by regulating the amount of non-selective binding surfactant by simply altering the ratio of oleylamine and fatty acid. With this approach, we were able to synthesize magnetite nanoparticles with sizes ranging between 6 ± 1 and 176 ± 20 nm and to select between more rounded or faceted shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Tran, T.J. Webster, Magnetic nanoparticles: biomedical applications and challenges. J. Mater. Chem. 20, 8760–8767 (2010)

    Article  Google Scholar 

  2. J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, S. Kim, Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65, 622–648 (2013)

    Article  Google Scholar 

  3. J. Park, J. Joo, G.K. Soon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007)

    Article  Google Scholar 

  4. S.G. Kwon, T. Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011)

    Article  Google Scholar 

  5. A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)

    Article  Google Scholar 

  6. I.A. Wani, T. Ahmad, Size and shape dependant antifungal activity of gold nanoparticles: a case study of candida. Colloid. Surface. B 101, 162–170 (2013)

    Article  Google Scholar 

  7. J. Baumgartner, A. Dey, P.H.H. Bomans, C. Le Coadou, P. Fratzl, N.A.J.M. Sommerdijk, D. Faivre, Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013)

    Article  ADS  Google Scholar 

  8. Z. Wu, S. Yang, W. Wu, Shape control of inorganic nanoparticles from solution. Nanoscale 8, 1237–1259 (2016)

    Article  ADS  Google Scholar 

  9. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  Google Scholar 

  10. E.H. Kim, H.S. Lee, B.K. Kwak, B.K. Kim, Synthesis of ferrouid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)

    Article  ADS  Google Scholar 

  11. Y. Lee, J. Lee, C.J. Bae, J.G. Park, H.J. Noh, J.H. Park, T. Hyeon, Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 15, 503–509 (2005)

    Article  Google Scholar 

  12. R. Strobel, S.E. Pratsinis, Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol. 20, 190–194 (2009)

    Article  Google Scholar 

  13. L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, P. Herrasti, Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 53, 3436–3441 (2008)

    Article  Google Scholar 

  14. I. Nyiro-Kósa, D.C. Nagy, M. Pósfai, Size and shape control of precipitated magnetite nanoparticles. Eur. J. Mineral. 21(293–302) (2009)

  15. K. Parvin, J. Ma, J. Ly, X.C. Sun, D.E. Nikles, K. Sun, L.M. Wang, Synthesis and magnetic properties of monodisperse Fe3O4 nanoparticles. J. Appl. Phys. 95, 7121–7123 (2004)

    Article  ADS  Google Scholar 

  16. W. W. Yu, J. C. Falkner, C. T. Yavuz, V. L. Colvin, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chem. Commun. 2306-2307 (2004)

  17. H.-G. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.-W. Wang, H. Zheng, Facet development during platinum nanocube growth. Science 345, 916–919 (2014)

    Article  ADS  Google Scholar 

  18. W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2015)

    Article  Google Scholar 

  19. T.-D. Nguyen, T.-O. Do, Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322–5332 (2009)

    Article  Google Scholar 

  20. S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Article  Google Scholar 

  21. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)

    Article  Google Scholar 

  22. L. Zhang, Q. Li, S. Liu, M. Ang, M.O. Tade, H.-C. Gu, Synthesis of pyramidal, cubical and truncated octahedral magnetite nanocrystals by controlling reaction heating rate. Adv. Powder Technol. 22, 532–536 (2011)

    Article  Google Scholar 

  23. W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, Y. Liu, The synthesis of octahedral nanoparticles of magnetite. Mater. Lett. 60, 2998–3001 (2006)

    Article  Google Scholar 

  24. X.-L. Cheng, J.-S. Jiang, D.-M. Jiang, Z.-J. Zhao, Synthesis of rhombic dodecahedral Fe3O4 nanocrystals with exposed high-energy 110 facets and their peroxidase-like activity and lithium storage properties. J. Phys. Chem. C 118, 12588–12598 (2014)

    Article  Google Scholar 

  25. W. Bu, Z. Chen, F. Chen, J. Shi, Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J. Phys. Chem. C 113, 12176–12185 (2009)

    Article  Google Scholar 

  26. V.M. Lenart, N.G.C. Astrath, R.F. Turchiello, G.F. Goya, S.L. Gómez, Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. J. Appl. Phys. 123, 085107 (2018)

    Article  ADS  Google Scholar 

  27. D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131, 454–455 (2009)

    Article  Google Scholar 

  28. C. Pradip, P. Maltesh, R.A. Somasundaran, S. Kulkarni, Gundiah, Polymer-polymer complexation in dilute aqueous solutions: poly(acrylic acid)-poly(ethylene oxide) and poly(acrylic acid)-poly(vinylpyrrolidone). Langmuir 7, 2108–2111 (1991)

    Article  Google Scholar 

  29. L. Zhang, R. He, H.-C. Gu, Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)

    Article  ADS  Google Scholar 

  30. M. Klokkenburg, J. Hilhorst, B. Erné, Surface analysis of magnetite nanoparticles in cyclohexane solutions of oleic acid and oleylamine. Vib. Spectrosc. 43, 243–248 (2007)

    Article  Google Scholar 

  31. Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778–1780 (2009)

    Article  Google Scholar 

  32. S. Mourdikoudis, L.M. Liz-Marzán, Oleylamine in nanoparticle synthesis. Chem. Mater. 25, 1465–1476 (2013)

    Article  Google Scholar 

  33. H. Yang, T. Ogawa, D. Hasegawa, M. Takahashi, Synthesis and magnetic properties of monodisperse magnetite nanocubes. J. Appl. Phys. 103, 07D526 (2008)

    Article  Google Scholar 

  34. A.R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008)

    Article  Google Scholar 

  35. K. Chen, C. Sun, D. Xue, Morphology engineering of high performance binary oxide electrodes. Phys. Chem. Chem. Phys. 17, 732–750 (2015)

    Article  Google Scholar 

  36. T. Otsuka, Y. Chujo, Preparation and characterization of poly(vinylpyrrolidone)/zirconium oxide hybrids by using inorganic nanocrystals. Polym. J. 40, 1157–1163 (2008)

    Article  Google Scholar 

  37. W. Bragg, The structure of magnetite and the spinels. Nature 95, 561 (1915)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from MINECO (Spain, project MAT2010-19236), INCT-FCx, and the Brazilian agencies CNPq, CAPES, FAPESP, and Fundação Araucária. V.M. Lenart also acknowledges fellowship from CAPES (Proc. n° 2263-13-0).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Leonardo Gómez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenart, V.M., de Fátima Turchiello, R., Calatayud, M.P. et al. Synthesis of Magnetite Nanoparticles of Different Size and Shape by Interplay of Two Different Surfactants. Braz J Phys 49, 829–835 (2019). https://doi.org/10.1007/s13538-019-00714-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00714-0

Keywords

Navigation