Skip to main content

Advertisement

Log in

Exploring prognostic value and regulation network of PPP1R1A in hepatocellular carcinoma

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Novel and accurate biomarkers are needed for early detection and progression evaluation of hepatocellular carcinoma (HCC). Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) has been studied in cancer biology; however, the expression pattern and biological function of PPP1R1A in HCC are unclear. The differentially expressed genes (DEGs) in HCC were screened by The Cancer Genome Atlas (TCGA) database. Real-time PCR and immunohistochemistry (IHC) assay were used to detect the expression of PPP1R1A in BALB/c mice, human normal tissues and corresponding tumor tissues, especially HCC. Then, Kaplan–Meier analysis of patients with HCC was performed to evaluate the relationship between PPP1R1A expression and prognosis. The transcriptional regulatory network of PPP1R1A was constructed based on the differentially expressed mRNAs, microRNAs and transcription factors (TFs). To explore the downstream regulation of PPP1R1A, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and immune infiltration score were performed. A total of 4 DEGs were screened out. PPP1R1A was differentially distributed and expressed in BALB/c mice and human tissues. PPP1R1A expression was higher in normal tissues than that in tumor tissues, and patients with higher PPP1R1A expression had better clinical outcome in HCC. In addition, we constructed miR-21-3p/TAL1/PPP1R1A transcriptional network. Furthermore, PPP1R1A may modulate the activation of PI3K–Akt pathway, cell cycle, glycogen metabolism and the recruitment of M2 macrophage in HCC. This study may help to clarify the function and mechanism of PPP1R1A in HCC and provide a potential biomarker for tumor prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data is available under reasonable request.

Abbreviations

PPP1R1A:

Protein phosphatase 1 regulatory subunit 1A

PP1:

Protein phosphatase 1

PPP:

Phosphoprotein phosphatase

DEGs:

Differentially expressed genes

TCGA:

The Cancer Genome Atlas

TFs:

Transcription factors

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

PPI:

Protein–protein interaction

TCIA:

The cancer immunome atlas

OS:

Overall survival

DFS:

Disease-free survival

CCs:

Cellular components

MFs:

Molecular functions

BPs:

Biological processes

PKA:

Protein kinase A

IHC:

Immunohistochemistry

HCC:

Hepatocellular carcinoma

LIHC:

Liver hepatocellular carcinoma

BLCA:

Bladder urothelial carcinoma

COAD:

Colon adenocarcinoma

BRCA:

Breast invasive carcinoma

PAAD:

Pancreatic adenocarcinoma

LGG:

Brain lower grade glioma

KIRC:

Kidney renal clear cell carcinoma

UVM:

Uveal melanoma

ES:

Ewing sarcoma

TAM:

Tumor-associated macrophage

References

  1. Beste LA, Leipertz SL, Green PK, Dominitz JA, Ross D, Ioannou GN. Trends in burden of cirrhosis and hepatocellular carcinoma by underlying liver disease in US veterans, 2001–2013. Gastroenterology. 2015;149(6):1471–82 (e17-8).

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  3. Ahn JC, Teng PC, Chen PJ, Posadas E, Tseng HR, Lu SC, et al. Detection of circulating tumor cells and their implications as a biomarker for diagnosis, prognostication, and therapeutic monitoring in hepatocellular carcinoma. Hepatology. 2021;73(1):422–36.

    Article  PubMed  Google Scholar 

  4. Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257–61.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Wang M, Li XY, Li J, Zhao DP. KIFC1 promotes the proliferation of hepatocellular carcinoma in vitro and in vivo. Oncol Lett. 2019;18(6):5739–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lemaire S, Bollen M. Protein phosphatase-1: dual activity regulation by Inhibitor-2. Biochem Soc Trans. 2020;48(5):2229–40.

    Article  CAS  PubMed  Google Scholar 

  7. Krzyzosiak A, Sigurdardottir A, Luh L, Carrara M, Das I, Schneider K, et al. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell. 2018;174(5):1216–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silva JV, Freitas MJ, Fardilha M. Phosphoprotein phosphatase 1 complexes in spermatogenesis. Curr Mol Pharmacol. 2014;7(2):136–46.

    Article  CAS  PubMed  Google Scholar 

  9. Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, et al. Loss of protein phosphatase 1 regulatory subunit PPP1R3A promotes atrial fibrillation. Circulation. 2019;140(8):681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verbinnen I, Ferreira M, Bollen M. Biogenesis and activity regulation of protein phosphatase 1. Biochem Soc Trans. 2017;45(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  11. Tiwari A, Tashiro K, Dixit A, Soni A, Vogel K, Hall B, et al. Loss of HIF1A from pancreatic cancer cells increases expression of PPP1R1B and degradation of p53 to promote invasion and metastasis. Gastroenterology. 2020;159(5):1882–97.

    Article  CAS  PubMed  Google Scholar 

  12. Chen PC, Li C, Wang D, Luo ZW, Fu SJ, Li X, et al. PP-1alpha and PP-1gamma display antagonism and differential roles in tumorigenicity of lung cancer cells. Curr Mol Med. 2013;13(1):220–7.

    Article  CAS  PubMed  Google Scholar 

  13. Chen BY, Huang CH, Lin YH, Huang CC, Deng CX, Hsu LC. The K898E germline variant in the PP1-binding motif of BRCA1 causes defects in DNA Repair. Sci Rep. 2014;4:5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schumann M, Gunzel D, Buergel N, Richter JF, Troeger H, May C, et al. Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut. 2012;61(2):220–8.

    Article  CAS  PubMed  Google Scholar 

  15. Walsh JE, Young MR. TGF-beta regulation of focal adhesion proteins and motility of premalignant oral lesions via protein phosphatase 1. Anticancer Res. 2011;31(10):3159–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Dessel N, Boens S, Lesage B, Winkler C, Gornemann J, Van Eynde A, et al. Protein phosphatase PP1-NIPP1 activates mesenchymal genes in HeLa cells. Febs Lett. 2015;589(12):1314–21.

    Article  PubMed  Google Scholar 

  17. Paul D, Bargale AB, Rapole S, Shetty PK, Santra MK. Protein phosphatase 1 regulatory subunit SDS22 inhibits breast cancer cell tumorigenesis by functioning as a negative regulator of the AKT signaling pathway. Neoplasia. 2019;21(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Rokavec M, Jiang L, Horst D, Hermeking H. Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology. 2017;153(2):505–20.

    Article  CAS  PubMed  Google Scholar 

  19. Boratko A, Csortos C. TIMAP, the versatile protein phosphatase 1 regulator in endothelial cells. IUBMB Life. 2017;69(12):918–28.

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Zhao J, Ren J, Hall KH, Moorman JP, Yao ZQ, et al. Protein phosphatase 1 abrogates IRF7-mediated type I IFN response in antiviral immunity. Eur J Immunol. 2016;46(10):2409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo W, Xu C, Ayello J, Dela CF, Rosenblum JM, Lessnick SL, et al. Protein phosphatase 1 regulatory subunit 1A in ewing sarcoma tumorigenesis and metastasis. Oncogene. 2018;37(6):798–809.

    Article  CAS  PubMed  Google Scholar 

  22. Shi SH, Jiang J, Zhang W, Sun L, Li XJ, Li C, et al. A novel lncRNA HOXC-AS3 Acts as a miR-3922-5p sponge to promote breast cancer metastasis. Cancer Invest. 2020;38(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Xiang Z, Chen X, Zhu X, Peng X. A seven-gene signature model predicts overall survival in kidney renal clear cell carcinoma. Hereditas. 2020;157(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou H, Chen Q, Tan W, Qiu Z, Li S, Song Y, et al. Integrated clinicopathological features and gene microarray analysis of pancreatic neuroendocrine tumors. Gene. 2017;625:72–7.

    Article  CAS  PubMed  Google Scholar 

  25. Yang M, Huang W, Sun Y, Liang H, Chen M, Wu X, et al. Prognosis and modulation mechanisms of COMMD6 in human tumours based on expression profiling and comprehensive bioinformatics analysis. Br J Cancer. 2019;121(8):699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao L, Zhang L, Yang M, Wang X, Huang W, Wu X, et al. Expression profile of SYNE3 and bioinformatic analysis of its prognostic value and functions in tumors. J Transl Med. 2020;18(1):355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fan Y, Zhang L, Sun Y, Yang M, Wang X, Wu X, et al. Expression profile and bioinformatics analysis of COMMD10 in BALB/C mice and human. Cancer Gene Ther. 2020;27(3–4):216–25.

    Article  CAS  PubMed  Google Scholar 

  28. Liang Y, Li Q, Chen K, Ni W, Zhan Z, Ye F, et al. Zinc finger protein 307 functions as a tumorsuppressor and inhibits cell proliferation by inducing apoptosis in hepatocellular carcinoma. Oncol Rep. 2017;38(4):2229–36.

    Article  CAS  PubMed  Google Scholar 

  29. Chen P, Lei L, Wang J, Zou X, Zhang D, Deng L, et al. Downregulation of Talin1 promotes hepatocellular carcinoma progression through activation of the ERK1/2 pathway. Cancer Sci. 2017;108(6):1157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao X, Wang X, Zhang S. Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma. 2018. Biosci Rep. https://doi.org/10.1042/BSR20181441.

  31. Dow M, Pyke RM, Tsui BY, Alexandrov LB, Nakagawa H, Taniguchi K, et al. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2018;115(42):E9879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lou W, Chen J, Ding B, Chen D, Zheng H, Jiang D, et al. Identification of invasion-metastasis-associated microRNAs in hepatocellular carcinoma based on bioinformatic analysis and experimental validation. J Transl Med. 2018;16(1):266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Felgueiras J, Jeronimo C, Fardilha M. Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer. 2020;1874(2): 188433.

    Article  CAS  PubMed  Google Scholar 

  34. Luo W, Xu C, Phillips S, Gardenswartz A, Rosenblum JM, Ayello J, et al. Protein phosphatase 1 regulatory subunit 1A regulates cell cycle progression in Ewing sarcoma. Oncotarget. 2020;11(19):1691–704.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tolsma TO, Hansen JC. Post-translational modifications and chromatin dynamics. Essays Biochem. 2019;63(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  36. Gao Z, Liu H, Shi Y, Yin L, Zhu Y, Liu R. Identification of cancer stem cell molecular markers and effects of hsa-miR-21–3p on stemness in esophageal squamous cell carcinoma. Cancers (Basel). 2019;11(4):518.

    Article  CAS  Google Scholar 

  37. Zhu Y, Tang H, Zhang L, Gong L, Wu G, Ni J, et al. Suppression of miR-21-3p enhances TRAIL-mediated apoptosis in liver cancer stem cells by suppressing the PI3K/Akt/Bad cascade via regulating PTEN. Cancer Manag Res. 2019;11:955–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baez-Vega PM, Echevarria VI, Valiyeva F, Encarnacion-Rosado J, Roman A, Flores J, et al. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget. 2016;7(24):36321–37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, Carter DR. The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 2015;137(1):143–51.

    Article  CAS  PubMed  Google Scholar 

  40. Jiao W, Leng X, Zhou Q, Wu Y, Sun L, Tan Y, et al. Different miR-21-3p isoforms and their different features in colorectal cancer. Int J Cancer. 2017;141(10):2103–11.

    Article  CAS  PubMed  Google Scholar 

  41. Hou N, Guo Z, Zhao G, Jia G, Luo B, Shen X, et al. Inhibition of microRNA-21-3p suppresses proliferation as well as invasion and induces apoptosis by targeting RNA-binding protein with multiple splicing through Smad4/extra cellular signal-regulated protein kinase signalling pathway in human colorectal cancer HCT116 cells. Clin Exp Pharmacol Physiol. 2018;45(7):729–41.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Liao Z, Luo H, Benyoucef A, Kang Y, Lai Q, et al. Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis. Nucleic Acids Res. 2020;48(6):3119–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 2013;210(8):1545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding C, Tang W, Wu H, Fan X, Luo J, Feng J, et al. The PEAK1-PPP1R12B axis inhibits tumor growth and metastasis by regulating Grb2/PI3K/Akt signalling in colorectal cancer. Cancer Lett. 2019;442:383–95.

    Article  CAS  PubMed  Google Scholar 

  46. Huang H, Tian H, Duan Z, Cao Y, Zhang XS, Sun F. microRNA-383 impairs phosphorylation of H2AX by targeting PNUTS and inducing cell cycle arrest in testicular embryonal carcinoma cells. Cell Signal. 2014;26(5):903–11.

    Article  CAS  PubMed  Google Scholar 

  47. Shahmoradgoli M, Riazalhosseini Y, Haag D, Becker N, Hovestadt V, Heck S, et al. Protein phosphatase 1, regulatory subunit 15B is a survival factor for ERalpha-positive breast cancer. Int J Cancer. 2013;132(11):2714–9.

    Article  CAS  PubMed  Google Scholar 

  48. Shen GM, Zhang FL, Liu XL, Zhang JW. Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia. FEBS Lett. 2010;584(20):4366–72.

    Article  CAS  PubMed  Google Scholar 

  49. Ramesh A, Kumar S, Nandi D, Kulkarni A. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater. 2019;31(51): e1904364.

    Article  PubMed  Google Scholar 

  50. Ovais M, Guo M, Chen C. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv Mater. 2019;31(19): e1808303.

    Article  PubMed  Google Scholar 

  51. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015;62(3):607–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the President Foundation of Nanfang Hospital, Southern Medical University (NO. 2020C039); Clinical Research Startup Program of Southern Medical University (NO. LC2019ZD008); Clinical Research Program of Nanfang Hospital, Southern Medical University (NO. 2018CR021 and NO. 2020CR025); National Natural Science Foundation of China (NO. 82102839); China Postdoctoral Science Foundation (NO. 2020M682815); Guangdong Basic and Applied Basic Research Foundation (NO. 2020A1515110787).

Author information

Authors and Affiliations

Authors

Contributions

JG and FY: contributed to the study design and draft revision. MY, YQW and NL: contributed to human specimen collection. XXW, LWL and LSZ: contributed to implementation and analysis of real-time PCR and IHC assay. XQW, MYM and YW: contributed to mice and tissue preparation. XXW and YW: contributed to data collection and interpretation of bioinformatics results. XXW: contributed to draft the manuscript and coordinate data collection and analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian Guan or Feng Ye.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Ethical approval and informed consent

This study was approved by the Ethics Committee of Nanfang Hospital of Southern Medical University. All participants offered written informed consent before operation. The study conforms to the provisions of the Declaration of Helsinki. Generated Statement: no potentially identifiable human images or data is presented in this study. All animal experiments were performed according to the institutional guidelines and approved by the Nanfang hospital animal ethic committee on January 11, 2018, application number NFYY-2018-05.

Consent for publication

All authors consent to the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2022_771_MOESM1_ESM.tif

Figure S1 Biological distribution and expression analysis of PPP1R1A in human normal tissues using UCSC database. (TIF 1518 KB)

13577_2022_771_MOESM2_ESM.tif

Figure S2 Prognostic value of PPP1R1A in (A) pancreatic adenocarcinoma (PAAD), (B) brain lower grade glioma (LGG), (C) kidney renal clear cell carcinoma (KIRC) and (D) uveal melanoma (UVM). (TIF 1406 KB)

13577_2022_771_MOESM3_ESM.tif

Figure S3 Relationship between PRRX2 and PPP1R1A in HCC. A Expression of PRRX2 in HCC patients with MT or NMT based on TCGA database. B Pearson analysis of correlation between the expression of PRRX2 and PPP1R1A in HCC. (TIF 270 KB)

13577_2022_771_MOESM4_ESM.xls

Table S1 Expression of ten miRNAs with detailed transcriptional information in NMT group and MT group based on TCGA–LIHC database. NMT: without recurrence and metastasis in 3 years; MT: with recurrence and metastasis in 1 year. (XLS 61 KB)

13577_2022_771_MOESM5_ESM.xls

Table S2 Differential expression of transcription factors in NMT group compared with MT group according to TCGA–LIHC database. NMT: without recurrence and metastasis in 3 years; MT: with recurrence and metastasis in 1 year (XLS 64 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Y., Yang, M. et al. Exploring prognostic value and regulation network of PPP1R1A in hepatocellular carcinoma. Human Cell 35, 1856–1868 (2022). https://doi.org/10.1007/s13577-022-00771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00771-9

Keywords

Navigation