Skip to main content

Advertisement

Log in

Protective Effects of Foods Containing Flavonoids on Age-Related Cognitive Decline

  • Nutrition and Aging (R Krikorian and BM Burton-Freeman, Section Editors)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Evidence suggests that flavonoids, polyphenolic compounds found in many plant-derived foods, such as berries, may allay cognitive impairment. We review recent research exploring the protective effects of flavonoids on age-related cognitive decline and neurodegenerative disorders in humans and animals. We also address the mechanisms by which flavonoids may exert their effects and promising avenues of future research.

Recent Findings

Flavonoids have been found to decrease neuroinflammation, reduce oxidative stress, and mediate neuroplasticity in animal models of neurodegeneration and aging. Injecting flavonoids encased in metal nanoparticles may further enhance the efficacy of flavonoids. Animal studies also demonstrate that flavonoid supplementation may alleviate neurodegenerative cognitive and memory impairments. Limited human studies, however, demonstrate the need for further clinical research investigating flavonoids.

Summary

Flavonoid supplementation, as well as dietary modification to include whole foods high in flavonoids, may provide therapeutic potential for aging individuals experiencing cognitive deficits resulting from neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1361779.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Orhan IE, Daglia M, Nabavi SF, Loizzo MR, Sobarzo-Sánchez E, Nabavi SM. Flavonoids and dementia: an update. Curr Med Chem. 2015;22(8):1004–15.

    Article  PubMed  CAS  Google Scholar 

  3. Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81:230S–42S.

    Article  PubMed  CAS  Google Scholar 

  4. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47.

    Article  PubMed  CAS  Google Scholar 

  5. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal. 2013;2013:162750.

    PubMed  PubMed Central  Google Scholar 

  6. Bhagwat S, Haytowitz DB, Holden JM. USDA database for the flavonoid content of selected foods, release 3. USDA, 2014.

  7. Almeida S, Alves MG, Sousa M, Oliveira PF, Silva BM. Are polyphenols strong dietary agents against neurotoxicity and neurodegeneration? Neurotox Res. 2016;30(3):345–66.

    Article  PubMed  CAS  Google Scholar 

  8. Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxidative Med Cell Longev. 2013;2013:1–18.

    Article  CAS  Google Scholar 

  9. Lamport DJ, Saunders C, Butler LT, Spencer JP. Fruits, vegetables, 100% juices, and cognitive function. Nutr Rev. 2014;72(12):774–89.

    Article  PubMed  Google Scholar 

  10. •• Ali T, Kim MJ, Rehman SU, Ahmad A, Kim MO. Anthocyanin-Loaded PEG-Gold Nanoparticles Enhanced the Neuroprotection of Anthocyanins in an Aβ1–42 Mouse Model of Alzheimer’s Disease. Mol Neurobiol. 2017;54(8):6490–506. The results of this study suggest that PEG-gold nanoparticles enhance bioavailability and protective effectiveness of anthocyanins in an Alzheimer’s mouse model.

    Article  PubMed  CAS  Google Scholar 

  11. Socci V, Tempesta D, Desideri G, De Gennaro L, Ferrara M. Enhancing human cognition with cocoa flavonoids. Frontiers in Nutrition 2017;4.

  12. Gillette-Guyonnet S, Secher M, Vellas B. Nutrition and neurodegeneration: epidemiological evidence and challenges for future research. Br J Clin Pharmacol. 2013;75(3):738–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med. 2012;52(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  14. Zamora-Ros R. Polyphenol epidemiology: looking back and moving forward. Am J Clin Nutr. 2016;104(3):549–50.

    Article  PubMed  CAS  Google Scholar 

  15. Devore EE, Kang JH, Breteler M, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72(1):135–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hagan KA, Munger KL, Ascherio A, Grodstein F. Epidemiology of major neurodegenerative diseases in women: contribution of the nurses’ health study. Am J Public Health. 2016;106(9):1650–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Devore EE, Grodstein F, van Rooij FJ, Hofman A, Stampfer MJ, Witteman JC, et al. Dietary antioxidants and long-term risk of dementia. Arch Neurol. 2010;67(7):819–25.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kesse-Guyot E, Fezeu L, Andreeva VA, Touvier M, Scalbert A, Hercberg S, et al. Total and Specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J Nutr. 2011;142(1):76–83.

    Article  PubMed  CAS  Google Scholar 

  19. Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr. 2013;97(5):995–1003.

    Article  PubMed  CAS  Google Scholar 

  20. Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, et al. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem. 2008;56(3):705–12.

    Article  PubMed  CAS  Google Scholar 

  21. Spencer JP. The impact of fruit flavonoids on memory and cognition. Br J Nutr. 2010;104:S40–7.

    Article  PubMed  CAS  Google Scholar 

  22. Rehman SU, Shah SA, Ali T, Chung JI, Kim MO. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol. 2017;54(1):255–71.

    Article  PubMed  CAS  Google Scholar 

  23. Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci. 2005;8(2):111–20.

    Article  PubMed  CAS  Google Scholar 

  24. Wei J, Zhang G, Zhang X, Xu D, Gao J, Fan J, et al. Anthocyanins from black chokeberry (Aroniamelanocarpa Elliot) delayed aging-related degenerative changes of brain. J Agric Food Chem. 2017;65(29):5973–84.

    Article  PubMed  CAS  Google Scholar 

  25. Bhatt PC, Pathak S, Kumar V, Panda BP. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer's disease by fermented soybean nanonutraceutical. Inflammopharmacology. 2018;26(1):105-18.

  26. Andrade PB, Grosso C, Valentao P, Bernardo J. Flavonoids in neurodegeneration: limitations and strategies to cross CNS barriers. Curr Med Chem. 2016;23(36):4151–74.

    Article  PubMed  CAS  Google Scholar 

  27. Sandhir R, Yadav A, Sunkaria A, Singhal N. Nano-antioxidants: an emerging strategy for intervention against neurodegenerative conditions. Neurochem Int. 2015;89:209–26.

    Article  PubMed  CAS  Google Scholar 

  28. Carey AN, Fisher DR, Rimando AM, Gomes SM, Bielinski DF, Shukitt-Hale B. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia. J Agric Food Chem. 2013;61(25):5979–86.

    Article  PubMed  CAS  Google Scholar 

  29. Joseph JA, Shukitt-Hale B, Brewer GJ, Weikel KA, Kalt W, Fisher DR. Differential protection among fractionated blueberry polyphenolic families against DA-, Abeta(42)- and LPS-induced decrements in ca(2+) buffering in primary hippocampal cells. J Agric Food Chem. 2010;58(14):8196–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci. 1999;19(18):8114–21.

    Article  PubMed  CAS  Google Scholar 

  31. Joseph JA, Arendash G, Gordon M, Diamond D, Shukitt-Hale B, Morgan D, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci. 2003;6(3):153–62.

    Article  PubMed  CAS  Google Scholar 

  32. Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem. 2010;58(7):3996–4000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Miller MG, Hamilton DA, Joseph JA, Shukitt-Hale B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur J Nutr. 2018;57(3):1169-80.

  34. Tan L, Yang HP, Pang W, Lu H, Hu YD, Li J, et al. Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice. Biomed Environ Sci. 2014;27(3):186–96. https://doi.org/10.3967/bes2014.007.

    Article  PubMed  CAS  Google Scholar 

  35. Tan L, Yang H, Pang W, Li H, Liu W, Sun S, et al. Investigation on the role of BDNF in the benefits of blueberry extracts for the improvement of learning and memory in Alzheimer's disease mouse model. J Alzheimers Dis. 2017;56:629–40.

    Article  PubMed  CAS  Google Scholar 

  36. Rendeiro C, Vauzour D, Rattray M, Waffo-Téguo P, Mérillon JM, Butler LT, et al. Spencer JP. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One. 2013;8(5):e63535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Beracochea D, Krazem A, Henkouss N, Haccard G, Roller M, Fromentin E. Intake of wild blueberry powder improves episodic-like and working memory during normal aging in mice. Planta Med. 2016;82(13):1163–8. https://doi.org/10.1055/s-0042-104419.

    Article  PubMed  CAS  Google Scholar 

  38. Boespflug EL, Eliassen JC, Dudley JA, Shidler MD, Kalt W, Summer SS, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci. 2018;21(4):297-305.

  39. Botwell JL, Aboo-Bakkar Z, Conway ME, Adlam AR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab. 2017;42(7):773–9. https://doi.org/10.1139/apnm-2016-0550.

    Article  CAS  Google Scholar 

  40. McNamara RK, Kalt W, Shidler MD, McDonald J, Summer SS, Stein AL, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging. 2018;64:147–56.

    Article  PubMed  CAS  Google Scholar 

  41. Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr. 2010b;103(5):730–4.

    Article  PubMed  CAS  Google Scholar 

  42. Krikorian R, Boespflug EL, Fleck DE, Stein AL, Wightman JD, Shidler MD, et al. Concord grape juice supplementation and neurocognitive function in human aging. J Agric Food Chem. 2012;60(23):5736–42.

    Article  PubMed  CAS  Google Scholar 

  43. Calapai G, Bonina F, Bonina A, Rizza L, Mannucci C, Arcoraci V, et al. A randomized, double-blinded, clinical trial on effects of a vitis vinifera extract on cognitive function in healthy older adults. Front Pharmacol. 2017;8:776.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lamport DJ, Lawton CL, Merat N, Jamson H, Myrissa K, Hofman D, et al. Concord grape juice, cognitive function, and driving performance: a 12-wk, placebo-controlled, randomized crossover trial in mothers of preteen children. Am J Clin Nutr. 2016;103(3):775–83.

    Article  PubMed  CAS  Google Scholar 

  45. Allam F, Dao AT, Chugh G, Bohat R, Jafri F, Patki G, et al. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats. J Nutr. 2013;143(6):835–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kean RJ, Lamport DJ, Dodd GF, Freeman JE, Williams CM, Ellis JA, et al. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am J Clin Nutr. 2015;101(3):506–14.

    Article  PubMed  CAS  Google Scholar 

  47. Alharbi MH, Lamport DJ, Dodd GF, Saunders C, Harkness L, Butler LT, et al. Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur J Nutr. 2016;55(6):2021–9.

    Article  PubMed  CAS  Google Scholar 

  48. Lamport DJ, Pal D, Macready AL, Barbosa-Boucas S, Fletcher JM, Williams CM, et al. The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br J Nutr. 2016b;116(12):2160–8.

    Article  PubMed  CAS  Google Scholar 

  49. Nakajima A, Aoyama Y, Nguyen TT, Shin EJ, Kim HC, Yamada S, et al. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behav Brain Res. 2013;250:351–60.

    Article  PubMed  CAS  Google Scholar 

  50. Bitu Pinto N, da Silva Alexandre B, Neves KR, Silva AH, Leal LK, Viana GS. Neuroprotective properties of the standardized extract from Camellia sinensis (green tea) and its main bioactive components, epicatechin and epigallocatechin gallate, in the 6-OHDA model of Parkinson’s disease. Evid Based Complement Alternat Med. 2015;2015:1–12.

    Article  Google Scholar 

  51. Walker JM, Klakotskaia D, Ajit D, Weisman GA, Wood WG, Sun GY, et al. Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer's disease mouse model. J Alzheimers Dis. 2015;44(2):561–72.

    Article  PubMed  CAS  Google Scholar 

  52. Ide K, Yamada H, Takuma N, Kawasaki Y, Harada S, Nakase J, et al. Effects of green tea consumption on cognitive dysfunction in an elderly population: a randomized placebo-controlled study. Nutr J. 2016;15(1):49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Park SK, Jung IC, Lee WK, Lee YS, Park HK, Go HJ, et al. A combination of green tea extract and l-theanine improves memory and attention in subjects with mild cognitive impairment: a double-blind placebo-controlled study. J Med Food. 2011;14(4):334–43.

    Article  PubMed  CAS  Google Scholar 

  54. Mancini E, Beglinger C, Drewe J, Zanchi D, Lang UE, Borgwardt S. Green tea effects on cognition, mood and human brain function: a systematic review. Phytomedicine. 2017;34:26–37. https://doi.org/10.1016/j.phymed.2017.07.008.

    Article  PubMed  CAS  Google Scholar 

  55. Noguchi-Shinohara M, Yuki S, Dohmoto C, Ikeda Y, Samuraki M, Iwasa K, et al. Consumption of green tea but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS One. 2014;9(5):e96013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Shen W, Xiao Y, Ying X, Li S, Zhai Y, Shang X, et al. Tea consumption and cognitive impairment: a cross-sectional study among Chinese elderly. PLoS One. 2015;6(10):4032–42.

    Google Scholar 

  57. Scholey A, Downey LA, Ciorciari J, Pipingas A, Nolidin K, Finn M, et al. Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite. 2012;58(2):767–70. https://doi.org/10.1016/j.appet.2011.11.016.

    Article  PubMed  CAS  Google Scholar 

  58. Okello EJ, Abadi AM, Abadi SA. Effects of green and black tea consumption on brain wave activities in healthy volunteers as measured by a simplified electroencephalogram (EEG): a feasibility study. Nutr Neurosci. 2016;19(5):196–205. https://doi.org/10.1179/1476830515Y.0000000008.

    Article  PubMed  Google Scholar 

  59. Borgwardt S, Hammann F, Scheffler K, Kreuter M, Drewe J, Beglinger C. Neural effects of green tea extract on dorsolateral prefrontal cortex. Eur J Clin Nutr. 2012;66(11):1187–92. https://doi.org/10.1038/ejcn.2012.105.

    Article  PubMed  CAS  Google Scholar 

  60. Bell L, Lamport DJ, Butler LT, Williams CM. A review of the cognitive effects observed in humans following acute supplementation with flavonoids, and their associated mechanisms of action. Nutrients. 2015;7:10290–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Rendeiro C, Rhodes JS, Spencer JP. The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochem Int. 2015;89:126–39.

    Article  PubMed  CAS  Google Scholar 

  62. Ganguly P, Brenhouse HC. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Developmental cognitive neuroscience. 2015;11:18–30.

    Article  PubMed  Google Scholar 

  63. Ribeiro D, Freitas M, Lima JL, Fernandes E. Proinflammatory pathways: the modulation by flavonoids. Med Res Rev. 2015;35(5):877–936.

    Article  PubMed  CAS  Google Scholar 

  64. Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, et al. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci (Landmark Ed). 2012;17(7):2396–418.

    Article  CAS  Google Scholar 

  65. Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2017; e-pub ahead of print.

  66. Dwyer JB, Ross DA. Modern microglia: novel targets in psychiatric neuroscience. Biol Psychiatry. 2016;80(7):e47–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, et al. Roles of microglia in brain development, tissue maintenance and repair. Brain. 2015;138(5):1138–59.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rohan WF, Microglia YR. Physiology and behavior: a brief commentary. Brain Behav Immun. 2016;55:1–5.

    Article  Google Scholar 

  69. Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron. 2013;77(1):10–8.

    Article  PubMed  CAS  Google Scholar 

  70. Ohgidani M, Kato TA, Sagata N, Hayakawa K, Shimokawa N, Sato-Kasai M, et al. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice. Brain Behav Immun. 2016;55:17–24.

    Article  PubMed  CAS  Google Scholar 

  71. Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol. 2014;10(4):217–24.

    Article  PubMed  CAS  Google Scholar 

  72. Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Huttermann M. Molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxidative Med Cell Longev. 2015;2015:1–13.

    Article  CAS  Google Scholar 

  73. Wei JC, Huang HC, Chen WJ, Huang CN, Peng CH, Lin CL. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur J Pharmacol. 2016;770:16–24.

    Article  CAS  Google Scholar 

  74. Jeong JW, Lee HH, Han MH, Kim GY, Kim WJ, Choi YH. Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem Biol Interact. 2014;212:30–9.

    Article  PubMed  CAS  Google Scholar 

  75. Zhu L, Bi W, Lu D, Zhang C, Shu X, Lu D. Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Experimental and therapeutic medicine. 2014;7(5):1065–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xie C, Kang J, Li Z, Schauss AG, Badger TM, Nagarajan S, et al. The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J Nutr Biochem. 2012;23(9):1184–91.

    Article  PubMed  CAS  Google Scholar 

  77. Karunaweera N, Raju R, Gyengesi E, Münch G. Plant polyphenols as inhibitors of NF-κB induced cytokine production—a potential anti-inflammatory treatment for Alzheimer's disease? Front Mol Neurosci. 2015;8:24.

  78. •• Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1–42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomed: Nanotechnol Biol Med. 2017;13(8):2533–44. This study provides evidence that anthocyanins loaded in PEG-gold nanoparticles more effectively protect against neuroinflammation and neurodegeneration than anthocyanins alone.

    Article  CAS  Google Scholar 

  79. Testa G, Gamba P, Badilli U, Gargiulo S, Maina M, Guina T, et al. Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols. PLoS One. 2014;9(5):e96795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bjorklund G, Dadar M, Chirumbolo S, Lysiuk R. Flavonoids as detoxifying and pro-survival agents: What’s new? Food Chem Toxicol. 2017;110:240–50. https://doi.org/10.1016/j.fct.2017.10.039.

    Article  PubMed  CAS  Google Scholar 

  81. Sandoval-Acuña C, Ferreira J, Speisky H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch Biochem Biophys. 2014;559:75–90.

    Article  PubMed  CAS  Google Scholar 

  82. Chang HC, Yang YR, Wang PS, Wang RY. Quercetin enhances exercise-mediated neuroprotective effects in brain ischemic rats. Med Sci Sports Exerc. 2014;46(10):1908–16.

    Article  PubMed  CAS  Google Scholar 

  83. Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med. 2004;36(5):592–604.

    Article  PubMed  CAS  Google Scholar 

  84. Hwang SL, Shih PH, Yen GC. Neuroprotective effects of citrus flavonoids. J Agric Food Chem. 2012;60:877–85.

    Article  PubMed  CAS  Google Scholar 

  85. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29:323–31.

    Article  PubMed  CAS  Google Scholar 

  86. Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med. 2008;45(3):295–305.

    Article  PubMed  CAS  Google Scholar 

  87. Sokolov AN, Pavlova MA, Klosterhalfen S, Chocolate EP. The brain: neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2445–53.

    Article  PubMed  CAS  Google Scholar 

  88. Vivar C. Adult hippocampal neurogenesis, aging and neurodegenerative diseases: possible strategies to prevent cognitive impairment. Curr Top Med Chem. 2015;15(21):2175–92.

    Article  PubMed  CAS  Google Scholar 

  89. Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr. 2008;3(3–4):115–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010;3:1.

    PubMed  PubMed Central  Google Scholar 

  91. Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology. 2014;76:677–83.

  92. Rendeiro C, Vauzour D, Kean RJ, Butler LT, Rattray M, Spencer JP, et al. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology. 2012;223(3):319–30.

    Article  PubMed  CAS  Google Scholar 

  93. Numakawa T. Possible protective action of neurotrophic factors and natural compounds against common neurodegenerative diseases. Neural Regen Res. 2014;9(16):1506–8.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Brickman AM, Khan UA, Provenzano FA, Yeung LK, Suzuki W, Schroeter H, et al. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci. 2014;17(12):1798–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pase MP, Scholey AB, Pipingas A, Kras M, Nolidin K, Gibbs A, et al. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. J Psychopharmacol. 2013;27(5):451–8.

    Article  PubMed  CAS  Google Scholar 

  96. Kent K, Charlton K, Roodenrys S, Batterham M, Potter J, Traynor V, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr. 2017;56(1):333–41.

    Article  PubMed  CAS  Google Scholar 

  97. • Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015;2015:905215. This review paper discusses how the gut microbiota influences the absorption and metabolism of flavonoids. Biodiversity in gut microbiota and how it can influence bioavailability of flavonoids is an important consideration when designing human dietary intervention studies.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda N. Carey.

Ethics declarations

Conflict of Interest

Kelsea R. Gildawie, Rachel L. Galli, Barbara Shukitt-Hale, and Amanda N. Carey declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects published here for the first time performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gildawie, K.R., Galli, R.L., Shukitt-Hale, B. et al. Protective Effects of Foods Containing Flavonoids on Age-Related Cognitive Decline. Curr Nutr Rep 7, 39–48 (2018). https://doi.org/10.1007/s13668-018-0227-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-018-0227-0

Keywords

Navigation