Skip to main content
Log in

Synthesis of daisy-shaped core–shell nanocomposites of chiral poly[(±)-2-(sec-butyl)aniline] in the solid state

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A green and simple procedure is reported on the synthesis of a daisy-like core–shell nanocomposite of chiral poly[(±)-2-(sec-butyl)aniline]/nanosilica. This morphology is related to the use of nanosilica and a mechanism based on intermolecular interactions between particles of nanosilica and the polymer. The morphology of the samples and their coating were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), SEM-map and energy-dispersive X-ray spectroscopy (EDX). The outstanding feature of this study is that it presents the first report of an in situ formation of daisy-like morphology for polyaniline nanocomposites through one-pot route without using pre-functionalized nanosilica and any other template under the solid-state condition; while this polymer has displayed no specific morphology under most conditions. According to XPS and CHNS analysis, the nigraniline oxidation state was confirmed as well as fully doping of composites (around 75%) in contrast with partial doping of poly[(±)-2-(sec-butyl)aniline].HCl salt. The structure of nanosilica was studied by 29Si NMR. The sample showed a conductivity around 5.2 × 10−2 S/cm, consistent with the XPS results which revealed the doping level. In addition, the TLM measurement was applied to determine the contact resistance. In this study, a chiral conductive nanocomposite was prepared under a solid-state condition in compliance with the green chemistry principles. Moreover, it was found that the nanocomposite is in delocalized polaron structure using solid acid as a dopant. Additionally, from the industrial point of view, the processability has been improved due to the introduction of the 2-sec-butyl group within the polymer backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26:5950–5956

    Article  CAS  PubMed  Google Scholar 

  2. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  PubMed  Google Scholar 

  3. Kickelbick G (2007) Hybrid materials: synthesis, characterization, and applications. Hoboken John Wiley

    Google Scholar 

  4. Humpolíček P, Radaszkiewicz KA, Capáková Z, Pacherník J, Bober P, Kašpárková V, Rejmontová P, Lehocký M, Ponížil P, Stejskal J (2018) Polyaniline cryogels: biocompatibility of novel conducting macroporous material. Sci Rep 8:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tomšík E, Kohut O, Ivanko I, Pekárek M, Bieloshapka I, Dallas P (2018) Assembly and interaction of polyaniline chains: impact on electro– and physical–chemical behavior. J Phys Chem C 122:8022–8030

    Article  CAS  Google Scholar 

  6. Modarresi-Alam AR, Zafari S, Miandashti AR (2015) A facile preparation method for synthesis of silica sulfuric acid/poly(o-methoxyaniline) core-shell nanocomposite. Polym Adv Technol 26:645–657

    Article  CAS  Google Scholar 

  7. Koosheh HB, Modarresi-Alam AR (2016) Solid-state synthesis of a new core-shell nanocomposite of polyaniline and silica via oxidation of aniline hydrochloride by FeCl3.6H2O. Polym Adv Technol 27:1038–1049

    Article  CAS  Google Scholar 

  8. Farrokhzadeh A, Modarresi-Alam AR (2016) Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: synthesis and characterization of the novel chiral composite of poly[(±)-2-(sec-butyl)aniline]. J Solid State Chem 237:258–268

    Article  CAS  Google Scholar 

  9. Landfester K, Rothe R, Antonietti M (2002) Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization. Macromolecules 35:1658–1662

    Article  CAS  Google Scholar 

  10. Schwarz JA, Contescu CI, Putyera K (2004) Dekker encyclopedia of nanoscience and nanotechnology. CRC Press,Boca Raton Vol. 3

    Google Scholar 

  11. Bourgeat-Lami E, Insulaire M, Reculusa S, Perro A, Ravaine S, Duguet E (2006) Nucleation of polystyrene latex particles in the presence of γ-methacryloxypropyltrimethoxysilane: functionalized silica particles. J Nanosci Nanotechnol 6:432–444

    Article  CAS  PubMed  Google Scholar 

  12. Zhang K, Zheng L, Zhang X, Chen X, Yang B (2006) Silica-PMMA core-shell and hollow nanospheres. Colloid Surf A 277:145–150

    Article  CAS  Google Scholar 

  13. Qu A, Wen X, Pi P, Cheng J, Yang Z (2008) Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants. J Colloid Interf Sci 317:62–69

    Article  CAS  Google Scholar 

  14. Chen Y, Kang ET, Neoh KG, Greiner A (2005) Preparation of hollow silica nanospheres by surface-initiated atom transfer radical polymerization on polymer latex templates. Adv Funct Mater 15:113–117

    Article  CAS  Google Scholar 

  15. Zhang SW, Zhou SX, Weng YM, Wu LM (2006) Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Langmuir 22:4674–4679

    Article  CAS  PubMed  Google Scholar 

  16. Chen M, Zhou S, Wu L, Xie S, Chen Y (2005) Preparation of silica-coated polystyrene hybrid spherical colloids. Macromol Chem Phys 206:1896–1902

    Article  CAS  Google Scholar 

  17. Caruso RA, Susha A, Caruso F (2001) Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem Mater 13:400–409

    Article  CAS  Google Scholar 

  18. Chen M, Zhou S, You B, Wu L (2005) A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres. Macromolecules 38:6411–6417

    Article  CAS  Google Scholar 

  19. Percy M, Amalvy J, Randall D, Armes S, Greaves S, Watts J (2004) Synthesis of vinyl polymer-silica colloidal nanocomposites prepared using commercial alcoholic silica sols. Langmuir 20:2184–2190

    Article  CAS  PubMed  Google Scholar 

  20. Tiarks F, Landfester K, Antonietti M (2001) Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization. Langmuir 17:5775–5780

    Article  CAS  Google Scholar 

  21. Qiao X, Chen M, Zhou J, Wu L (2007) Synthesis of raspberry-like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization. J Polym Sci Part A Polym Chem 45:1028–1037

    Article  CAS  Google Scholar 

  22. Qi DM, Bao YZ, Weng ZX, Huang ZM (2006) Preparation of acrylate polymer/silica nanocomposite particles with high silica encapsulation efficiency via miniemulsion polymerization. Polymer 47:4622–4629

    Article  CAS  Google Scholar 

  23. Jang J, Ha J, Lim B (2006) Synthesis and characterization of monodisperse silica–polyaniline core-shell nanoparticles. Chem Commun. https://doi.org/10.1039/b600167j

    Article  Google Scholar 

  24. Percy M, Michailidou V, Armes S, Perruchot C, Watts J, Greaves S (2003) Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization. Langmuir 19:2072–2079

    Article  CAS  Google Scholar 

  25. Guo R, Qi L, Mo Z, Wu Q, Yang S (2017) A new route to synthesize polyaniline-grafted carboxyl-functionalized graphene composite materials with excellent electrochemical performance. Iran Polym J 26:423–430

    Article  Google Scholar 

  26. Reculusa S, Mingotaud C, Bourgeat-Lami E, Duguet E, Ravaine S (2004) Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett 4:1677–1682

    Article  CAS  Google Scholar 

  27. Tran HD, D’Arcy JM, Wan Y, Beltramo PJ, Strong VA, Kaner RB (2010) The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J Mater Chem 21:3534–3550

    Article  Google Scholar 

  28. Peng L, Qisui W, Xi L, Chaocan Z (2009) Investigation of the states of water and OH groups on the surface of silica. Colloid Surf A 334:112–115

    Article  CAS  Google Scholar 

  29. Trchová M, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes (IUPAC technical report). Pure Appl Chem 83:1803–1817

    Article  CAS  Google Scholar 

  30. Modarresi-Alam AR, Amirazizi HA, Movahedifar F, Farrokhzadeh A, Asli GR, Nahavandi H (2015) The first report of polymerization and characterization of aniline bearing chiral alkyl group on ring via covalent bond; poly[(±)-2-(sec-butyl)aniline]. J Mol Struct 1083:17–26

    Article  CAS  Google Scholar 

  31. Movahedifar F, Modarresi-Alam AR (2016) The effect of initiators and oxidants on the morphology of poly[(±)-2-(sec-butyl)aniline] a chiral bulky substituted polyaniline derivative. Polym Adv Technol 27:131–139

    Article  CAS  Google Scholar 

  32. Bergeron JY, Dao LH (1992) Electrical and physical properties of new electrically conducting quasi-composites. Poly(aniline-co-N-butylaniline) copolymers. Macromolecules 25:3332–3337

    Article  CAS  Google Scholar 

  33. Xia Y, Wiesinger JM, MacDiarmid AG, Epstein AJ (1995) Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chem Mater 7:443–445

    Article  CAS  Google Scholar 

  34. Abdiryim T, Xiao-Gang Z, Jamal R (2005) Synthesis and characterization of poly(o-toluidine) doped with organic sulfonic acid by solid-state polymerization. J Appl Polym Sci 96:1630–1634

    Article  CAS  Google Scholar 

  35. Eftekhari A (2011) Nanostructured conductive polymers.Hoboken John Wiley

    Google Scholar 

  36. Kulkarni MV, Viswanath AK, Mulik U (2005) Studies on chemically synthesized organic acid doped poly(o-toluidine). Mater Chem Phys 89:1–5

    Article  CAS  Google Scholar 

  37. Percy M, Amalvy J, Barthet C, Armes S, Greaves S, Watts J, Wiese H (2002) Surface characterization of vinyl polymer-silica colloidal nanocomposites using X-ray photoelectron spectroscopy. J Mater Chem 12:697–702

    Article  CAS  Google Scholar 

  38. Kang E, Neoh K, Tan K (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  CAS  Google Scholar 

  39. Spange S (2000) Silica surface modification by cationic polymerization and carbenium intermediates. Prog Polym Sci 25:781–849

    Article  CAS  Google Scholar 

  40. Bancroft EE, Pemberton JE, Blount HN (1980) Reactions of cation radicals of EE systems. 10. The influence of ion association on cation radical disproportionation. J Phys Chem 84:2557–2560

    Article  CAS  Google Scholar 

  41. Atanasoska L, Naoi K, Smyrl WH (1992) XPS studies on conducting polymers: polypyrrole films doped with perchlorate and polymeric anions. Chem Mater 4:988–994

    Article  CAS  Google Scholar 

  42. Li G, Wang L, Ni H, Pittman CU (2001) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11:123–154

    Article  CAS  Google Scholar 

  43. Ismail YA (2010) Synthesis and characterization of electrically conducting poly-o-methoxyaniline Zr (1V) molybdate Cd(II) selective composite cation-exchanger. Desalination 250:523–529

    Article  CAS  Google Scholar 

  44. Ansari SP, Mohammad F (2016) Conducting nanocomposites of polyaniline/nylon 6,6/zinc oxide nanoparticles: preparation, characterization and electrical conductivity studies. Iran Polym J 25:363–371

    Article  CAS  Google Scholar 

  45. Giraudet L, Fauveaux S, Simonetti O, Petit C, Blary K, Maurel T, Belkhir A (2006) Spin-coated conductive polymer film resistivity measurement using the TLM method. Synth Met 156:838–842

    Article  CAS  Google Scholar 

  46. Lin D, Kwok K, Chan HL (2007) Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1 − xLix(Nb1 − y Tay)O3 lead-free piezoelectric ceramics. J Appl Phys 102:034102

    Article  CAS  Google Scholar 

  47. Mokreva P, Tsocheva D, Ivanova G, Terlemezyan L (2006) Copolymers of aniline and o-methoxyaniline: synthesis and characterization. J Appl Polym Sci 99:75–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Iran National Science Foundation (INSF) (The Office of President, Vice-Presidency for Science and Technology) and the Graduate Council of University of Sistan and Baluchestan for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Modarresi-Alam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1028 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modarresi-Alam, A.R., Farrokhzadeh, A., Shabzendedar, S. et al. Synthesis of daisy-shaped core–shell nanocomposites of chiral poly[(±)-2-(sec-butyl)aniline] in the solid state. Iran Polym J 28, 75–86 (2019). https://doi.org/10.1007/s13726-018-0679-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0679-5

Keyword

Navigation